Cuando se publicó la primera edición de este libro en inglés a principios de los ochenta, yo creía que el efecto Bernoulli, que explicaré más adelante, producía las fuerzas de sustentación que eran las principales responsables de la propulsión en la natación. En aquella edición sugerí una mecánica para los cuatro estilos competitivos que implicaba movimientos tridimensionales de remada en los que los nadadores utilizaban los miembros como objetos con perfil de ala para maximizar la producción de dichas fuerzas de sustentación.
Todavía mantenía la opinión de que las fuerzas de sustentación representaban un mecanismo propulsor importante cuando se publicó la segunda edición en inglés a principio de los noventa. Para entonces, sin embargo, había llegado a dudar de que el efecto Bernoulli fuera responsable de dichas fuerzas de sustentación, y sugerí en su lugar que el tercer principio del movimiento de Newton, el de la acción y reacción, era el principio físico más importante responsable de la propulsión en la natación. Había llegado a creer, inequívocamente, que los nadadores tenían que empujar el agua hacia atrás para desplazarse hacia delante. Sin embargo, seguía creyendo que los nadadores estaban remando sus miembros por el agua como objetos con perfil de ala para propulsar el cuerpo hacia delante. La diferencia era que creía que dichos movimientos de remada estaban desplazando el agua hacia atrás en lugar de utilizar el mecanismo de Bernoulli para crear fuerzas de sustentación.
Hoy en día estoy más convencido que nunca de que el tercer principio del movimiento de Newton es el mecanismo de propulsión más importante en la propulsión de la natación humana. Sin embargo, ya no creo que los nadadores remen con sus miembros por el agua como objetos con perfil de ala para producir dicha propulsión. Ahora creo que utilizan sus miembros como palas para empujar grandes cantidades de agua hacia atrás y desplazarlas una distancia corta. Sigo creyendo que la propulsión en la natación se produce mediante una combinación de fuerzas de sustentación y de arrastre, pero ahora sugiero que los nadadores producen estas fuerzas utilizando sus miembros como palas y no como objetos con perfil de ala.
Aunque los términos de sustentación y arrastre son familiares para los nadadores, puede que algunos lectores no comprendan todas sus implicaciones. Por lo tanto, quiero definirlos antes de proseguir.
Arrastre es el término utilizado para identificar la resistencia del agua a los movimientos del nadador que se desplaza a través de ella. El agua tiene densidad porque está formada por billones de moléculas de hidrógeno y oxígeno. Por lo tanto, al igual que el aire, se clasifica como un semisólido. Sin embargo el agua, dado que es 1.000 veces más densa que el aire, ofrece una resistencia significativamente mayor a los movimientos del nadador. Esta resistencia es causada por la diferencia en la presión del agua delante y detrás del nadador. Los objetos tienden a ser empujados desde zonas de alta presión hacia zonas de baja presión. Por consiguiente si la presión del agua por delante del nadador es mayor que la presión por detrás, su velocidad de avance será reducida a no ser que pueda superar la presión añadida ejerciendo mayor fuerza. La reducción de la velocidad será directamente proporcional a la magnitud de la diferencia de presión entre el agua que está por delante y el agua que está por detrás.
La fuerza de arrastre se ejerce siempre en la dirección opuesta a la dirección del movimiento. En otras palabras, es una fuerza que se opone al movimiento de un objeto. Normalmente pensamos en el arrastre como algo negativo, una fuerza que nos impide avanzar. Es cierto que las fuerzas de arrastre pueden reducir la velocidad de natación cuando la resistencia del agua impide que el nadador avance. Sin embargo, el arrastre también puede ser propulsor. Los nadadores pueden acelerar el cuerpo hacia delante empujando sus miembros hacia atrás contra la resistencia del agua, de la misma forma que los corredores propulsan su cuerpo hacia delante empujando hacia atrás en el suelo. Por supuesto la diferencia principal es que el agua, siendo un fluido, cede cuando los miembros la empujan, mientras que el suelo no. Por lo tanto la propulsión en la natación es mucho menos eficaz que la propulsión en la tierra. El cuerpo no acelera hacia delante tan rápidamente ni cubrirá tanto espacio cuando los nadadores empujan hacia atrás contra el agua como lo que ocurre con el cuerpo de un corredor.
Para facilitar la comunicación, voy a dividir el concepto único de la fuerza de arrastre en dos tipos. Las fuerzas de arrastre que retienen a los nadadores se llamarán arrastre resistivo y las fuerzas de arrastre que aceleran a los nadadores hacia delante se llamarán arrastre propulsor.
La fuerza de sustentación se ejerce perpendicularmente a la fuerza de arrastre. Tiene que estar presente la fuerza de arrastre antes de que se pueda producir la de sustentación. La sustentación, como el arrastre, es causada por diferencias en la presión entre dos lados de un objeto. Sin embargo, en lugar de resistirse al movimiento de un objeto, la fuerza de sustentación empuja el objeto en la dirección en que se ejerce. La figura 1.1a ilustra una manera en la que un aumento de la presión por debajo de un objeto con perfil de ala puede producir sustentación. En esta ilustración, un objeto con perfil de ala se está desplazando de derecha a izquierda por el agua en la dirección de la flecha dibujada en él. La diferencia de presión entre el agua delante del objeto, donde es mayor, y detrás del objeto, donde es menor, crea una fuerza de arrastre opuesta al movimiento del objeto. La dirección de la fuerza de arrastre está indicada por los vectores de arrastre.
El objeto con perfil de ala parte el flujo de moléculas de agua al entrar en él. Algunas moléculas son empujadas debajo del objeto y otras son empujadas por encima de él. (Flujos de moléculas también son empujados a cada lado del objeto, aunque no se aprecia en esta ilustración bidimensional.) Dado que el ritmo del flujo que fluye por debajo del objeto con perfil de ala se frena un poco, las moléculas de agua se amontonan mucho y aumenta la presión debajo del objeto. Al mismo tiempo, el ritmo del flujo aumenta por encima del objeto. Las moléculas del agua están menos apretadas, lo que causa una reducción de la presión por encima del objeto. Como resultado de este diferencial de presión, el objeto es empujado hacia arriba desde abajo donde la presión es mayor (+) hasta arriba donde la presión es menor (-). Sustentación o elevación es el término utilizado para designar esta fuerza que empuja.
Es una pena que se haya utilizado el término sustentación para identificar esta fuerza que empuja porque las fuerzas de sustentación no siempre actúan en una dirección ascendente. Las fuerzas de sustentación pueden actuar en cualquier dirección que es perpendicular a la fuerza de arrastre. La ilustración de la figura 1.1b muestra cómo se podría producir una sustentación hacia delante si el mismo objeto con perfil de ala es-tuviera desplazándose hacia abajo en lugar de hacia delante. Hablaré más sobre este tema más adelante en este capítulo.
Figura 1.1. La fuerza de sustentación: (a) en una dirección ascendente y (b) en una dirección de avance.
Nadie ha identificado todavía con certeza la manera en que los nadadores se propulsan a través del agua. Sólo tenemos teorías, y han variado de manera considerable a lo largo de los años. Presentaré un breve resumen de las varias teorías de la propulsión en la natación que se han propuesto a lo largo de los años antes de describir la teoría que yo he adoptado.

Figura 1.2. La teoría de la propulsión parecida a la de una rueda de vapor.
A principios de siglo, las tentativas de describir la propulsión en la natación humana compararon los movimientos de los brazos de los nadadores con los de remos y ruedas de vapor. Se creía que los brazos, totalmente extendidos, se movían con un patrón semicircular que asemejaba el movimiento de un remo o de una rueda de vapor, una forma de propulsión parecida a la de una rueda de vapor ilustrada en la figura 1.2. Esta descripción no se basó en la aplicación de ningún principio físico ni en observaciones subacuáticas de los movimientos reales del nadador durante la brazada; se basó sencillamente en las formas de propulsión acuática que existían en aquel momento. Esta teoría sobrevivió durante varias décadas sin ser estudiada de forma seria.
Algunos científicos y entrenadores de natación empezaron a tratar de definir los principios físicos que controlaban la propulsión en la natación humana al final de los sesenta. De entre los entrenadores de natación, los más destacados eran el Dr. James E. Counsilman, de la Universidad de Indiana, y Charles Silvia, de Springfield College. Como resultado de sus observaciones subacuáticas ambos afirmaron que los nadadores no realizaban las brazadas en forma de rueda de vapor con brazos rectos, sino que flexionaban y extendían sus brazos de forma alternativa durante las fases subacuáticas de los diversos estilos competitivos. En publicaciones diferentes, ambos sugirieron que los nadadores estaban realizando sus brazadas de esta manera para utilizar el tercer principio del movimiento de Newton como mecanismo propulsor (Counsilman, 1968; Silvia, 1970).
El tercer principio del movimiento de Newton afirma que cada acción (fuerza) de un objeto producirá una reacción (fuerza contraria) de igual magnitud en la dirección opuesta. Cuando se aplica a la propulsión en la natación, este principio significa que cuando los nadadores utilizan la fuerza muscular para empujar el agua hacia atrás, esta acción crea una fuerza contraria de igual magnitud que les propulsa hacia delante. Por lo tanto, ellos creían que los nadadores aceleraban su cuerpo hacia delante empujando el agua hacia atrás. Además, creían que la cantidad resultante de propulsión efectiva estaba directamente relacionada con la cantidad de agua que empujaban hacia atrás y la distancia que ésta recorría.

Figura 1.3. Un ejemplo de la teoría del arrastre propulsor, utilizando un empujón horizontal hacia atrás para crear la propulsión efectiva.
Como resultado de este razonamiento, se aconsejó a los nadadores de esta época que utilizasen las manos y los brazos como palas para tirar y luego empujar el agua hacia atrás a la mayor distancia posible. También se les aconsejó que, cuando fuera posible, mantuviesen las manos directamente debajo de la línea media del cuerpo el mayor tiempo posible. Les enseñaron a hacer esto flexionando los brazos en el codo durante la primera mitad de la brazada subacuática y luego extendiéndolos en la segunda mitad. En la figura 1.3 se presenta un ejemplo de cómo se utilizaba el empuje horizontal hacia atrás en el estilo libre.
Durante los primeros tiempos de la teoría de la propulsión utilizando los brazos como palas, los expertos afirmaron que empujar el agua en cualquier dirección que no fuera hacia atrás haría que el cuerpo se desviase de su trayectoria hacia delante, lo que aumentaría la resistencia que encontrara y reduciría la velocidad de avance. Muchos expertos, incluyendo Counsilman y Silvia, revisaron su opinión cuando las películas subacuáticas de nadadores de elite mundial revelaron que no desplazaban sus manos directamente hacia atrás por debajo de la línea media del cuerpo durante la fase propulsora de la brazada subacuática, sino que, en estilo libre y mariposa, sus manos se desplazaban siguiendo una trayectoria tridimensional en forma de S, bajando hacia abajo y hacia dentro de su cuerpo en la primera mitad de la brazada subacuática y luego subiendo y moviéndose hacia fuera durante la segunda mitad. La figura 1.4 muestra una vista inferior de esta trayectoria en forma de S en el estilo libre. Sus manos también seguían una trayectoria en forma de S nadando espalda, pero en este caso se desplazaban hacia abajo, hacia arriba y hacia atrás para volver al lado del cuerpo. En braza sus manos trazaban la primera mitad de la forma en S, pero luego se desplazaban hacia delante antes de terminar el resto del movimiento en forma de S. En mariposa, las manos trazaban una trayectoria de doble S.
Counsilman razonó que los nadadores movían sus manos en trayectorias con forma de S porque el hecho de empujar varios puñados de agua en direcciones mayormente hacia atrás una corta distancia produciría más propulsión que empujar un solo puñado de agua hacia atrás una mayor distancia. La razón era que el agua gana momento una vez que se mueve, por lo tanto, la única manera que tendrían los nadadores de poder seguir acelerando el agua hacia atrás, y acelerando el cuerpo hacia delante, sería aumentar la velocidad hacia atrás de los miembros por encima de la velocidad del agua que se desplazaba en esa misma dirección. Tendrían que empujar los brazos hacia atrás con una velocidad cada vez mayor desde el principio hasta el final de la brazada subacuática si querían seguir acelerando el cuerpo hacia delante. Evidentemente, esto requeriría un esfuerzo considerable y predispondría a los nadadores a sufrir una fatiga precoz.
En cambio, estos grandes aumentos de la velocidad de los miembros no serían necesarios para acelerar el cuerpo hacia delante si los nadadores cambiasen periódicamente la dirección de sus manos durante la brazada subacuática. Cambiar la dirección de la mano les permitiría sacarla del agua que previamente habían acelerado hacia atrás y meterla en agua tranquila o que se desplazaba lentamente, que podrían acelerar en direcciones mayormente hacia atrás con menos esfuerzo muscular. Por lo tanto, podrían ganar más propulsión con menos fuerza muscular utilizando una brazada subacuática en forma de S.
Los críticos de esta teoría argumentaban que los componentes laterales, descendentes y ascendentes de estas trayectorias en forma de S aumentarían el arrastre y, por lo tanto, reducirían la propulsión. Los defensores de la teoría replicaban diciendo que la fuerza propulsora neta sería mayor durante cada brazada a pesar de los movimientos laterales y verticales de los brazos. Esta noción de que se puede producir más fuerza propulsora con movimientos que contienen algunos componentes laterales y verticales que con movimientos que se dirigen directamente hacia atrás es importante. Aprenderás más tarde que los nadadores no pueden y no deben dirigir la brazada directamente hacia atrás para propulsar el cuerpo hacia delante, incluso cuando aplican el principio de Newton de acción y reacción.

Figura 1.4. Una nadadora de estilo libre vista desde abajo desplazando su mano en una trayectoria propulsora en forma de S durante la fase propulsora de la brazada subacuática.
Las trayectorias de las brazadas ilustradas en las figuras 1.2, 1.3 y 1.4 son trayectorias punteadas de forma hipotética de los movimientos subacuáticos de las manos de nadadores, y, como tales, son defectuosas porque muestran las manos desplazándose hacia atrás en relación con el cuerpo. Como se mencionó en la introducción a la primera parte de este libro, la falacia de presentar las trayectorias de brazadas de esta forma es que los nadadores parecen quedarse en el mismo sitio mientras que los brazos se desplazan a lo largo del cuerpo. En realidad, por supuesto, el cuerpo está siempre desplazándose hacia delante cuando nadan, así que los brazos se desplazan hacia atrás significativamente menos de lo que se indica en estas figuras.
Brown y Counsilman (1971) fueron los primeros en mostrar las direcciones reales de las manos de los nadadores durante las brazadas subacuáticas. En su estudio pionero, filmaron a nadadores en una piscina oscura con una luz atada a los dedos de la mano. Cuando se reveló la película, las trayectorias de brazada descubiertas en estas películas cinematográficas eran bastante diferentes de cualquiera que se había visto con anterioridad. Mostraron a los nadadores haciendo movimientos diagonales de brazada con las manos desplazándose en direcciones más laterales y verticales que hacia atrás. Sus resultados fueron verificados después en varios estudios que mostraron a los nadadores utilizando trayectorias de brazada circulares con componentes laterales y verticales que superaban los movimientos de las manos dirigidos hacia atrás (Plagenhoff, 1971; Barthels y Adrian, 1974; Belokovsky e Ivanchenko, 1975; Schleihauf, 1978; Czabanski y Koszyczyc, 1979; Reischle, 1979; Schleihauf et al., 1984; Hinrichs, 1986; Luedtke, 1986; Maglischo et al., 1986). A diferencia de las trayectorias de brazada dibujadas en relación con los cuerpos estacionarios, las trayectorias captadas en película por Brown y Counsilman mostraron los movimientos reales de las manos de los nadadores durante sus brazadas subacuáticas. Se ilustran las trayectorias típicas de la brazada para los cuatro estilos competitivos, dibujadas en relación con un punto fijo en la piscina, en la figura 1.5.

Figura 1.5. Trayectorias de la brazada de los cuatro estilos competitivos dibujadas en relación con un punto fijo: (a) vista lateral y (b) frontal del estilo libre; (c) vista lateral de espalda; (d) vista inferior de mariposa, y (e) vista frontal de braza.
Brown y Counsilman creyeron que los componentes laterales y verticales de los movimientos de las manos de los nadadores, dada su magnitud, tenían que ser propulsores, y, por lo tanto, dudaron de que el principio de Newton de acción y reacción pudiese ser el principal mecanismo de la propulsión en la natación humana. En su búsqueda de un principio físico que explicase cómo los movimientos laterales y verticales de los miembros podrían generar propulsión, adoptaron el teorema de Bernoulli que describiré a continuación.
Daniel Bernoulli era un científico suizo que fue el primero en identificar la relación inversa entre la velocidad del flujo de un fluido y la presión. Encontró que, para un fluido ideal, la presión era menor cuando el fluido fluía rápidamente, y era ma yor cuando el fluido tenía menor velocidad. El teorema de Bernoulli proporciona una explicación de la forma en que se producen las fuerzas de sustentación cuando objetos con perfil de ala se desplazan a través de fluidos, o cuando estos fluyen alrededor de dichos objetos. El teorema de Bernoulli se explica mejor con respecto a la aerodinámica. Sin embargo, el ejemplo también puede aplicarse a la hidrodinámica porque tanto el aire como el agua son fluidos.
Cuando un avión se desplaza hacia delante, el movimiento relativo de las corrientes de aire inmediatamente delante del ala irá hacia atrás, ejerciendo una fuerza de arrastre que actúa en dirección contraria a la del desplazamiento del avión. El ala debe separar las corrientes de aire para poder pasar a través de ellas. Como consecuencia, algunas de las corrientes pasan por encima del ala mientras que otras pasan por debajo. En la figura 1.6, el movimiento de esta corriente se ilustra con las pequeñas flechas que representan el flujo relativo del aire.
Las alas están dispuestas de manera que la velocidad del aire que pasa por encima de ellas es mayor que la que pasa por debajo. Dado que la superficie superior del ala es redondeada y, por lo tanto, más larga que la inferior, la velocidad del aire que fluye por encima debe acelerar para llegar a la parte trasera del ala al mismo tiempo que el aire que fluye por debajo. Según el teorema de Bernoulli, este aumento de la velocidad causa que las moléculas del aire que pasan por encima del ala se separen, reduciendo así la presión en relación con la presión del aire que pasa por debajo. Los objetos tienden a desplazarse desde áreas de presión alta a áreas de presión baja, así que una vez que el diferencial de presión entre la superficie superior y la inferior del ala es lo bastante grande empujará el avión hacia arriba y lo mantendrá en el aire. Como se indicó anteriormente, la fuerza ascendente ejercida por este diferencial de presión se llama sustentación y, como se ilustra en la figura 1.6, se ejerce perpendicularmente a la dirección de la fuerza de arrastre.

Figura 1.6. Un ejemplo del papel desempeñado por el teorema de Bernoulli en el vuelo de un avión.
Counsilman y Brown sugirieron que, como la mano humana tenía forma de ala, podría utilizarse para producir sustentación de una manera similar a la que se obtiene con objetos con perfil de ala. Un ejemplo de la manera en que la propulsión en la natación podría resultar de la aplicación del teorema de Bernoulli se muestra en la figura 1.7.

Figura 1.7. La aplicación del teorema de Bernoulli a la propulsión en la natación.
La ilustración de la figura 1.7 muestra la vista inferior de un nadador de mariposa desplazando sus manos hacia atrás y hacia dentro por debajo de su cuerpo. Al hacerlo, las fuerzas de arrastre indicadas por el vector de arrastre por encima de la mano izquierda del nadador se ejercerán en la dirección opuesta al desplazamiento de sus manos. Según el teorema de Bernoulli, el agua que fluye por encima de las superficies superiores más largas de las manos del nadador (ilustrada por las flechas pequeñas por encima de la mano izquierda del nadador) será acelerada de manera que llegará al lado del meñique de la mano del nadador al mismo tiempo que el agua que fluye por debajo de su mano (ilustrada por la flecha grande debajo de la mano izquierda del nadador). Como consecuencia, la presión del agua será más baja por encima de las manos del nadador, donde fluye más rápidamente, que por debajo de sus manos, donde el agua fluye más lentamente. Esta diferencia de presión se indica con los signos + y – debajo y encima de la mano del nadador. Estos diferenciales de presión producen fuerzas de sustentación que, como sabemos, actúan perpendicularmente a la dirección de las fuerzas de arrastre. La dirección de la fuerza de sustentación se indica en el vector de sustentación por encima de la mano izquierda del nadador.
La situación en cuanto a la propulsión en la natación humana es algo más complicada de lo que se indicó en el ejemplo simplificado del avión en la figura 1.6 (véase página 19). El movimiento hacia delante del nadador, llamado propulsión o fuerza resultante en la figura 1.7 (página 19), es causado realmente por una combinación de las fuerzas de sustentación y arrastre producidas por el cuerpo del nadador. Sus manos se desplazan diagonalmente hacia atrás, causando la producción de fuerzas de sustentación y arrastre en una dirección diagonal hacia delante y no directa. La combinación de partes de estas dos fuerzas produce un componente de fuerza que apunta directamente hacia delante. Ésta es la fuerza que acelera al nadador hacia delante. (Recuerda, ya que esta ilustración es de la vista inferior del nadador, que el vector que apunta hacia arriba realmente representa una fuerza que apunta hacia delante.) Para ser totalmente exacto, la fuerza propulsora se ejerce realmente contra la mano y el brazo del nadador. Sin embargo, cuando éste resiste esa fuerza manteniendo el empuje de sus manos hacia dentro y hacia atrás, la fuerza propulsora se transfiere a su cuerpo suspendido, que acelera hacia delante pasando al lado de sus brazos.
El teorema de Bernoulli ha ganado una amplia aceptación durante las últimas dos décadas porque proporcionaba una razón científica que explica los movimientos diagonales de brazada que utilizaban los nadadores. Sin embargo, recientemente, varios expertos han llegado a dudar de su aplicación a la propulsión en la natación humana. Algunas investigaciones de los últimos años sugieren que el teorema de Bernoulli no está implicado en la propulsión en la natación en absoluto.
La principal crítica relacionada con el teorema de Bernoulli es que puede que no se aplique a la propulsión en la natación humana. El teorema de Bernoulli sólo se aplica cuando el flujo del agua por encima de la superficie superior de un objeto con perfil de ala permanece unido al objeto, es decir, si el agua pudiera pasar por encima del objeto con perfil de ala sin que se separase la capa límite. La capa límite consiste en las moléculas de agua que permanecen en contacto con un objeto que se desplaza a través de ellas. Una capa límite intacta indica una baja turbulencia y baja presión, que resulta en un mayor diferencial de presión entre la superficie inferior del objeto con perfil de ala donde la presión es mayor y la superficie superior donde la presión es menor. Cuando aumenta la turbulencia, las moléculas de agua se separan de la superficie superior del objeto con perfil de ala y se dice que la capa límite se ha separado. Por lo tanto, una capa límite separada indica turbulencia y un aumento de la presión por encima del objeto. A su vez, esto reduce el diferencial de presión entre las superficies inferior y superior del objeto y reduce la fuerza de sustentación. Como consecuencia, una capa límite intacta o unida es esencial para que se produzcan fuerzas de sustentación según el mecanismo de Bernoulli. Cuando la capa límite se separa, ya no existen las condiciones necesarias para que el mecanismo de Bernoulli pueda producir la fuerza de sustentación.
Actualmente existen bastantes pruebas de que los miembros de los humanos no son, y nunca han sido, suficientemente lisos ni parecidos a objetos con perfil de ala para permitir que el flujo del agua permanezca adherido a la superficie superior de las manos del nadador al pasar alrededor de ellas. Por lo tanto, es dudoso que el mecanismo de Bernoulli sea responsable de la propulsión en la natación. Por el momento, describiré los resultados de algunas investigaciones que tienden a desacreditar el teorema de Bernoulli como mecanismo propulsor. Sin embargo, antes de hacerlo, me gustaría describir cómo se miden los ángulos de ataque de las manos porque estaré refiriéndome a ellos regularmente a lo largo de este y otros capítulos.
Ángulos de ataque. El ángulo de ataque de las manos ha sido un tema que ha merecido mucha atención en relación con el teorema de Bernoulli. La razón ha sido que se creía que el ángulo de ataque desempeñaba un papel importante en la creación del diferencial de presión entre las superficies inferior y superior de la mano que causaba la producción de la fuerza de sustentación. El ángulo de ataque es el ángulo formado por la inclinación de la palma de la mano hacia la dirección en la que se desplaza por el agua. Por ejemplo, con un ángulo de 90º, la palma de la mano estaría mirando directamente en la dirección en la que se está desplazando. Con un ángulo de 0º, el borde de la mano, sea el borde del pulgar o el borde del meñique, estaría mirando en la dirección en la que se desplaza la mano.
La ilustración de la figura 1.8 presenta un ejemplo de cómo se mide el ángulo de ataque. Es importante saber cómo se desplaza la mano por el agua para poder comprender este valor. Saber qué parte de la mano está en cabeza y pasa primero por una sección de agua y, por lo tanto, qué parte va atrasada de manera que pasa la última por la sección de agua determina la dirección de la fuerza de arrastre y, por consiguiente, la dirección de la fuerza de sustentación. Como se mencionó anteriormente, se creará una fuerza de arrastre en la dirección opuesta a la dirección que lleva la mano en el agua. Para los movimientos hacia dentro, el borde del pulgar será la parte que va en primer lugar. Es decir, que el pulgar pasará primero por una sección de agua y el meñique pasará último por esa misma sección. Por lo tanto, la dirección de la fuerza de arrastre se ejercerá por la mano desde el pulgar hasta el meñique. En cambio, durante los movimientos hacia fuera el meñique irá en primer lugar y la fuerza de arrastre se ejercerá desde el meñique hacia el pulgar. De igual manera, las yemas de los dedos formarán el borde de la mano que va primero durante el primer movimiento descendente del brazo al principio de la brazada subacuática en el estilo libre y espalda. En otras palabras, las yemas de los dedos pasarán primero por una sección de agua y la parte de la palma próxima a la muñeca pasará por dicha sección en último lugar, de manera que la fuerza de arrastre irá desde las yemas de los dedos hacia las muñecas. Durante los movimientos ascendentes del brazo, la parte de la palma próxima a la muñeca pasará primera por el agua, seguida del resto de la mano y los dedos, y la fuerza de arrastre irá desde las muñecas hacia las yemas de los dedos.

Figura 1.8. Vistas lateral e inferior del nadador de estilo libre terminando la fase propulsora de su brazada subacuática. El nadador ilustra el ángulo de orientación del movimiento hacia atrás en (a) y el ángulo de ataque en (b).
El agua no fluye siempre directamente debajo del centro de la palma desde el borde de ataque hasta el de salida, sino que normalmente fluye siguiendo un ángulo. La dirección del flujo de esta agua se denomina el ángulo de orientación. La línea que recorre la parte dorsal del antebrazo del nadador y atraviesa su palma en la figura 1.8a muestra este ángulo de orientación. La mano del nadador está desplazándose hacia fuera, hacia arriba y hacia atrás, y su mano está angulada hacia fuera y hacia arriba. Por lo tanto, el flujo relativo del agua baja por la palma del nadador, del borde de la muñeca del lado del meñique hacia las yemas de sus dedos del lado del pulgar.
El ángulo de ataque de la mano indica su inclinación en la dirección del flujo relativo del agua al pasar por la palma. Los dibujos en la figuras 1.8a y b indican que el nadador está utilizando un ángulo de ataque de 50º. El ángulo de ataque es una medida tridimensional y, por lo tanto, no puede representarse con precisión en dos dimensiones. Por esta razón, la posición de la mano se muestra desde la vista lateral y la inferior.
Terminada esta explicación, volveré a describir algunos de los estudios que critican el principio de Bernoulli como mecanismo propulsor. Me gustaría describir cuatro de ellos. El primero fue una tesis de master dirigida por Ferrell en la Universidad Estatal de Cortland. El segundo es de un científico de cohetes y padre de nadador llamado Bixler. El tercer estudio fue dirigido por Holt y Holt en la Universidad de Dalhousie, y el cuarto y más reciente fue dirigido por Toussaint y colaboradores del Instituto para la Ciencia Fundamental y Clínica del Movimiento Humano de Ámsterdam.
La investigación de Ferrell. Ferrell (1991) utilizó tres modelos de las manos de nadadores hechas de resina de fibra de vidrio para estudiar su potencial para producir sustentación mediante el principio de Bernoulli. Colocó flecos (pequeñas tiras de látex que medían aproximadamente 2,5 cm de largo) en los modelos y luego los desplazaba por el agua con varios ángulos de ataque. Los dibujos de la figura 1.9 ilustran la mano de fibra de vidrio con los flecos utilizada por Ferrell. Los flecos estaban adheridos al dorso de la mano fijados sólo por un extremo de manera que el otro podía ondear libremente en el agua. Utilizando un dispositivo movido por gravedad, la mano era trasladada por el agua a velocidades de entre 0,30 y 3 m/s con ángulos de ataque que variaban entre 0º y 40º desde dos orientaciones diferentes. Todas las pruebas simulaban un movimiento hacia dentro con el lado del pulgar pasando por el agua primero. Se realizaron un total de cuarenta y cinco pruebas, y se filmó cada prueba con vídeo para observar cómo el movimiento de la mano afectaba los flecos adheridos a ella.
La idea en la que se basaba este procedimiento era utilizar los flecos como vehículo para visualizar el patrón del flujo del agua alrededor de la mano. Si la capa límite estaba adherida, todos los flecos serían empujados para atrás contra la superficie de la mano hacia el lado del meñique, es decir, en la dirección opuesta al movimiento de la mano por el agua. En cambio, si la capa límite se había separado al pasar el agua por encima de la mano, los flecos estarían ondeando en direcciones aleatorias.
Ferrell no encontró ninguna evidencia de que la capa límite quedase unida. Los movimientos totalmente aleatorios de los flecos indicaron que el agua era tan turbulenta que la capa límite no podía permanecer intacta, incluso cuando la mano se desplazaba lentamente y con ángulos agudos de ataque. La figura 1.9 ilustra el movimiento de los flecos cuando la mano de fibra de vidrio se estaba moviendo por el agua con un ángulo de ataque de 30º. Se puede ver que los flecos están ondeando de forma aleatoria.
Ferrell concluyó que la turbulencia exhibida por los flecos indicaba una separación de la capa límite por encima de la superficie superior de la mano, que a su vez anulaba cualquier posibilidad de que fuerzas originadas por el teorema de Bernoulli pudiesen producirse con los ángulos de ataque y velocidades de la mano utilizados por los nadadores de competición.

Figura 1.9. Reproducción de la imagen de vídeo de la mano de resina de fibra de vidrio de Ferrell con los flecos adheridos.
Adaptada de Ferrell, 1991.
La investigación de Bixler. Bixler (1999) utilizó un enfoque innovador para estudiar el flujo del agua alrededor de las manos del nadador. De profesión ingeniero, elaboró un modelo de la superficie de la mano y del brazo de un nadador en el ordenador, y luego utilizó un programa de análisis para calcular, entre otros factores, la dirección y la velocidad del flujo del fluido, los cambios de presión dentro de los fluidos y su efecto resultante sobre las fuerzas de sustentación y arrastre. Este procedimiento, llamado dinámica de fluidos informatizada, es una metodología bien establecida en el campo de la ingeniería para resolver problemas complejos de flujo con un ordenador. Según Bixler, se puede considerar que el método es parecido a un túnel de viento dentro de un ordenador.
Utilizando el ordenador para simular el flujo del agua alrededor de su modelo, Bixler demostró que el agua se alejaba antes de que pudiera pasar alrededor del modelo. Esto le llevó a concluir que: “El hecho de que la capa límite se separe es importante porque demuestra que la ecuación de Bernoulli no debe emplearse para explicar la sustentación que los nadadores generan con sus manos”. Afirmó además: “Uno de los supuestos establecidos por Bernoulli al derivar su ecuación era que el flujo de un fluido se realizaba sin fricción, lo que significa que la capa límite se quedaba unida”.
Quiero aclarar que los resultados de Ferrell y Bixler no significan que las fuerzas de sustentación no son producidas por los nadadores, sino que indican que el efecto de Bernoulli no podía ser responsable de ellas.
Bixler también comparó su modelo de la mano con un modelo combinado de una mano y un brazo para comprobar su capacidad para producir sustentación con varios ángulos de ataque y orientaciones en el agua. El modelo combinado de la mano y el brazo era aún menos parecido a una forma con perfil de ala. El modelo simulado de la mano y el brazo produjo grandes coeficientes de arrastre y coeficientes mínimos de sustentación con todos los ángulos de ataque. De hecho, cuando se calcularon los coeficientes para el modelo combinado de la mano y el brazo, los de arrastre superaron los de sustentación por un margen considerable con todos los ángulos de ataque. Por lo tanto, es dudoso que las manos y los brazos de los nadadores puedan producir sustentación mediante el mecanismo del principio de Bernoulli cuando carecen de tantas características propias de una forma con perfil de ala.
La investigación de Holt y Holt. Los estudios que utilizaron canales de agua y modelos de escayola de los miembros humanos ciertamente han ampliado nuestros conocimientos sobre la propulsión en la natación. Sin embargo, si eres como yo, te gustará ver los resultados generados por sujetos humanos. En este caso, los resultados de otros dos estudios ponen en duda la aplicación del principio de Bernoulli a la propulsión en la natación humana. El primero de estos fue dirigido por Holt y Holt (1989).
Dichos investigadores hicieron que un grupo de nadadores completasen pruebas cronometradas de una distancia idéntica de 91,44 m con y sin palas con forma de aleta fijadas en el dorso de la mano. El objetivo de las palas era perturbar el flujo del agua de manera que la capa límite se separase y no se pudiese producir sustentación por el efecto de Bernoulli. Los tiempos de los nadadores eran, como promedio, sólo un 2% más lentos cuando utilizaban las palas. Dicho resultado llevó a los autores a concluir que, en el mejor de los casos, el principio de Bernoulli desempeñaba sólo un papel menor en la propulsión en la natación.
La investigación de Toussaint, van den Berg y Beek. Toussaint, van den Berg y Beek (2000) utilizaron la técnica de los flecos para examinar la dirección del flujo del agua alrededor de los brazos de atletas mientras nadaban. Adhirieron los flecos a la parte anterior de las manos y antebrazos de los nadadores y luego los filmaron mientras nadaban en la piscina con velocidad lenta, moderada y rápida. Se sorprendieron al ver que una parte del agua estaba bajando por la parte anterior de los antebrazos y las manos de los nadadores durante la fase propulsora de la brazada. Los tres habían supuesto que la dirección del flujo del agua sería opuesta a la de las manos y brazos de los nadadores. Esta dirección del flujo del agua hacia abajo, que ellos denominaron fuerza axial, causaría turbulencia por encima de la mano e imposibilitaría mantener la capa límite intacta. Por consiguiente, concluyeron que las manos de los nadadores no podían funcionar como si tuviesen una forma con perfil de ala y así generar fuerzas de sustentación según el principio de Bernoulli.
Se ha ofrecido la teoría del vórtice para explicar cómo las fuerzas de sustentación podrían desempeñar un papel importante en la propulsión en la natación, incluso cuando la capa límite se separa al desplazar los nadadores sus miembros por el agua. Cecil Colwin (1992) ha sido el defensor más destacado del papel de la formación de vórtices en la propulsión en la natación. Cree que la formación de vórtices puede mantener un diferencial de presión entre las superficies inferior y superior de la mano de los nadadores, incluso cuando el flujo del agua es turbulento.
Un vórtice es una masa de fluido en rotación. La ilustración de la figura 1.10 muestra cómo la formación de un vórtice podría aumentar la fuerza de sustentación sobre un objeto con perfil de ala. El proceso empieza con la formación de un vórtice inicial. Algunas de las moléculas que pasan por encima de los bordes de salida del objeto y algunas que pasan por debajo de estos bordes de salida se enrollarán hacia arriba, hacia la superficie superior del objeto, porque la presión del agua por encima del objeto es menor que la que hay debajo. Estas moléculas de agua se desplazan no solamente hacia arriba sino también hacia delante, por encima del objeto formando el vórtice inicial. Según el principio de Newton de acción y reacción, un vórtice moviéndose en una dirección creará un “contravórtice” de igual magnitud girando en la dirección opuesta. Este “contravórtice” se denomina el vórtice adherido.
Un vórtice adherido actúa como una capa de fluido que circula alrededor del objeto con perfil de ala en dirección opuesta a la del vórtice inicial, es decir, rota en la dirección de las agujas del reloj desde la parte delantera hacia la parte trasera por encima del objeto y desde la parte trasera hacia la parte delantera por debajo del mismo. Por esto, la fuerza del “contravórtice” por encima del objeto irá en la misma dirección que el flujo relativo del agua por encima del mismo, de delante atrás. Al hacerlo, aumenta la velocidad del flujo del agua por encima de la superficie superior del objeto que, a su vez, causa una reducción adicional de la presión por encima de esta superficie. Al mismo tiempo, la fuerza del “contravórtice” por debajo del objeto se ejerce en la dirección opuesta al flujo del agua. Por lo tanto, el “contravórtice” desacelerará la velocidad de aquel fluido y causará un aumento adicional de la presión por debajo del objeto. El resultado de estas acciones es que el diferencial de presión requerido para la producción de fuerzas de sustentación se intensificará entre las superficies inferiores (+) y superiores (-) del objeto, incluso cuando el flujo real del agua alrededor del objeto es inestable.

Figura 1.10. La formación de un vórtice adherido alrededor de un objeto con perfil de ala.
Habiendo dicho esto, debería aclarar que un vórtice adherido no es una realidad física. Es decir, una capa de agua no está realmente circulando alrededor del objeto con perfil de ala de la manera que acabo de describir. No obstante, la fuerza asociada con la formación de un vórtice inicial tiene que producir una fuerza contraria de igual magnitud. Esta fuerza contraria actuará como un “contravórtice” y aumentará el diferencial de presión entre las superficies inferiores y superiores del objeto como si hubiese una capa de agua circulando en dirección contraria a la del vórtice inicial. Esta fuerza contraria seguirá intensificando el diferencial de presión entre las superficies inferiores (+) y superiores (–) del objeto con perfil de ala hasta que el vórtice inicial es arrastrado por el agua. El vórtice inicial normalmente es llevado por el agua en forma de una masa de moléculas girando en círculos cuando se produce un cambio repentino en la dirección o velocidad del objeto y/o en su ángulo de ataque.
Colwin cree que los nadadores se propulsan a través del agua con movimientos rotativos de los miembros que causan la formación de vórtices que luego son dejados con cada cambio de dirección que efectúan durante sus brazadas subacuáticas. Los nadadores eficientes, en su opinión, saben formar y dejar los vórtices controlando la forma y los movimientos de sus miembros para crear propulsión de dos tipos: perfil de ala y aro volador. En general cree que la propulsión tipo perfil de ala tiene lugar en la primera mitad de la brazada subacuática, mientras que el mecanismo del aro volador se utiliza, con mayor frecuencia, para producir propulsión durante la segunda mitad de la brazada. Colwin también ha sugerido que el mecanismo del aro volador crea propulsión cuando las piernas cambian de dirección descendente a ascendente, o viceversa, durante el batido. Ahora describiré los mecanismos de perfil de ala y aro volador con mayor profundidad.
La propulsión tipo perfil de ala. La propulsión tipo perfil de ala es el resultado de las fuerzas de sustentación producidas cuando se forma un vórtice inicial y antes de que se lo lleve el agua o sea dejado atrás. El flujo del fluido por las manos debe ser estable para que no se deje el vórtice inicial atrás. Se cree que los buenos nadadores establecen este flujo estable mediante la orientación cuidadosa de sus manos al principio de la brazada subacuática. Una vez establecido este flujo, los nadadores lo mantienen mediante una cuidadosa aceleración y orientación de los miembros de manera que el fluido no se separe de ellos. Sin embargo, sólo pueden mantener el flujo estable alrededor de las manos durante una pequeña parte de la brazada subacuática, porque los miembros están cambiando constantemente de dirección, de velocidad y de ángulo de ataque. Por consiguiente, el vórtice inicial debe ser dejado atrás y formarse uno nuevo cada vez que los nadadores realizan un cambio importante de dirección, de velocidad o de ángulo de ataque con los miembros. Colwin cree que el factor que diferencia a los nadadores con destreza de los que no tienen tanta es la habilidad de aquéllos de controlar los movimientos de sus miembros de manera que los vórtices iniciales se mantengan durante una fase particular de la brazada y luego se dejen atrás en el momento oportuno.
La propulsión tipo aro volador. La propulsión tipo aro volador ocurre en los principales puntos de transición en la brazada subacuática cuando se dejan los vórtices iniciales. El agua que es lanzada hacia atrás desde los miembros después de un repentino cambio de velocidad, dirección o ángulo de ataque causa una fuerza contraria de igual magnitud que acelerará al nadador hacia delante. Un ejemplo de cómo se supone que aumenta este fenómeno la propulsión en la natación se ilustra en la figura 1.11 con un nadador de estilo libre.
En esta ilustración se ve al nadador ejecutando la última fase propulsora de su brazada subacuática. Cuando cambia la dirección de su mano de dentro afuera al principio de este movimiento, crea un vórtice inicial que es transportado con su mano hasta que desacelera justo antes de llegar a la superficie. En este punto, el vórtice inicial es dejado atrás, produciéndose una aceleración de la velocidad de avance del nadador.
La teoría de los vórtices en la propulsión en la natación se basa en los principios sólidos de la aerodinámica. Si realmente actúa durante la natación humana, significará que las fuerzas de sustentación contribuyen de modo considerable a la propulsión incluso cuando la capa límite se separa. Desafortunadamente, existen muchas dificultades para verificar o desmentir esta teoría.

Figura 1.11. Un ejemplo del mecanismo del aro volador con un nadador de estilo libre que completa la fase propulsora de su brazada subacuática.
Adaptada de Colwin, 1984.
El principal problema para verificar esta teoría es determinar si los nadadores pueden realmente establecer un vórtice adherido alrededor de las manos y los pies durante sus esfuerzos propulsores subacuáticos. Si no se puede mantener un vórtice adherido, aunque sea a lo largo de distancias cortas, su efecto para aumentar la fuerza de sustentación y perder los vórtices no estaría disponible para la propulsión tipo perfil de ala ni tipo aro volador.
Es cierto que se ven los vórtices perdidos por las manos, brazos y pies de los nadadores. No obstante, no existe ninguna prueba de que estas masas de aguas turbulentas que quedan atrás resulten de la creación y abandono de los vórtices adheridos. De hecho, las pruebas disponibles indican que un vórtice adherido no se desarrollará alrededor de unos objetos tan pequeños y tan poco hidrodinámicos como las manos y los brazos de los nadadores. Un vórtice adherido necesita tiempo para desarrollarse, y el hecho de que la capa límite se separa tan deprisa al pasar por la mano humana hace dudoso que haya bastante tiempo para formar un vórtice inicial que se desarrollará en un vórtice adherido.
Los patrones de la velocidad de avance del centro de masas de los nadadores también crean una duda sobre la eficacia de los mecanismos de perfil de ala y aro volador para producir la propulsión. Si estuviesen funcionando, esperarías ver los cuerpos de los nadadores acelerando hacia delante al realizar los principales cambios de dirección y de velocidad de los miembros durante sus brazadas subacuáticas. Sin embargo, estos registros del centro de masas indican que los nadadores realmente desaceleran durante estos momentos. El patrón común es que el cuerpo acelerará hasta una velocidad pico en medio de cada fase propulsora de la brazada subacuática y desacelerará hacia el final de la misma. La única excepción a esta observación general ocurre durante el final de la brazada subacuática en mariposa, espalda y estilo libre.
Considero la evidencia de que el principio de Bernoulli no esté implicado en la propulsión en la natación bastante convincente. También creo que las pruebas actualmente disponibles no apoyan la noción de que la propulsión sea el resultado de la formación y pérdida de vórtices. En mi opinión, el tercer principio del movimiento de Newton, el principio de la acción y reacción, ofrece la explicación más probable de la propulsión en la natación humana.
La fuerza contraria que los nadadores producen cuando empujan diagonalmente hacia atrás contra el agua con sus miembros proporciona la fuerza que propulsa su cuerpo hacia delante. Esta fuerza contraria es una combinación de las fuerzas de sustentación y de arrastre que producen con sus miembros porque, por razones que presentaré más adelante, no empujan esta agua directamente hacia atrás. Sin embargo, creo que el acto de empujar el agua mayormente hacia atrás crea la fuerza propulsora que acelera el cuerpo del nadador hacia delante. Aunque ésta es la teoría de la propulsión que he llegado a aceptar después de varios años de estudio, no puedo garantizar que es, en todos sus aspectos, una explicación precisa de los mecanismos de la propulsión humana. Sin embargo, en el momento actual, parece ser la explicación más lógica basada en las pruebas disponibles.
Había varias preguntas que tenía que contestarme antes de llegar a mi opinión actual de que los principios del movimiento de Newton fueran los responsables de la propulsión en la natación competitiva. El primer tema tenía que ver con por qué las manos de los nadadores se movían lateral y verticalmente durante tanto tiempo durante las brazadas subacuáticas.
¿Por qué los nadadores utilizan trayectorias de brazada diagonales si su objetivo es empujar el agua hacia atrás?
Ésta es una pregunta que podría surgir de forma lógica. Quizá fue el tema más importante que tuve que resolver antes de aceptar que la propulsión en la natación humana resultaba de empujar el agua hacia atrás con los miembros. Un movimiento recto hacia atrás parecería ser el método más efectivo para producir la mayor fuerza contraria propulsora; sin embargo, los patrones de brazada mostraron universalmente que durante las brazadas subacuáticas los nadadores movían los miembros en direcciones laterales y verticales tanto o más que hacia atrás. Después de considerarlo durante mucho tiempo, creo que puedo proporcionar algunas explicaciones creíbles de estas trayectorias diagonales de brazada. Las presentaré en las siguientes secciones.
Los movimientos diagonales de brazada probablemente aumentan la distancia por brazada y la fuerza propulsora total por ciclo de brazada.
Quizá la razón más convincente por la que se realiza una brazada diagonalmente hacia atrás fue presentada por Counsilman (1977) cuando razonó que los nadadores movían las manos con trayectorias con forma de S para alejar los miembros del agua que previamente habían acelerado hacia atrás e introducirlos en corrientes de agua que iban más lentamente y que podían acelerar hacia atrás con menos esfuerzo. Por lo tanto, los nadadores deberían poder ganar más distancia por brazada con menores frecuencias de ciclo y menor gasto energético muscular empujando contra varios segmentos de agua que fluyen lentamente.
Se podría cuestionar si los componentes lateral y vertical de las brazadas de los nadadores reducirían la cantidad de fuerza propulsora que podrían producir comparándola con la producida sencillamente por empujar el agua directamente hacia atrás. De hecho, los movimientos diagonales de la brazada hacen que una mayor cantidad de agua sea desplazada hacia atrás con menos esfuerzo muscular durante toda la brazada subacuática, mientras que, al mismo tiempo, causan sólo una pequeña reducción de la fuerza propulsora en cada fase de esta brazada. Bixler (1999) lo demostró con su modelo del brazo y mano generado por ordenador. Calculó que la fuerza propulsora que generaban los nadadores con un movimiento diagonal de brazada era sólo ligeramente menor que la fuerza propulsora que podrían generar empujando el agua directamente hacia atrás. Las diferencias en la fuerza propulsora que calculó de un empuje dirigido directamente hacia atrás y de dos empujes dirigidos diagonalmente hacia atrás se muestran en la figura 1.12. Las trayectorias de las brazadas y las manos ilustradas al final de cada barra ofrecen una imagen visual de los ángulos de brazada y los ángulos de ataque de las manos representados por la misma barra. Se presenta la vista inferior de la brazada derecha de un nadador de estilo libre en medio de la brazada por debajo del cuerpo, con las manos representando imágenes en espejo, para que puedas seguir la trayectoria con la mano derecha.

Figura 1.12. Las diferencias de fuerza propulsora calculadas para un empuje dirigido directamente hacia atrás y dos empujes dirigidos diagonalmente hacia atrás.
Adaptada de Bixler, 1999.
Cuando se compara con empujar la mano directamente hacia atrás (con un ángulo de brazada de 0º y un ángulo de ataque de 90º), la fuerza propulsora sólo se redujo en 2 newtons (N) (65 N frente a 63 N) cuando se cambió el ángulo de brazada a 30º y el ángulo de ataque de la mano a 75º. Se redujo en sólo 8 N (65 N frente a 57 N) cuando el ángulo de brazada fue de 45º y el ángulo de ataque de la mano fue de 60º.
La trayectoria de la brazada sería mucho más corta si los nadadores empujasen directamente hacia atrás desde el principio hasta el final de la brazada subacuática. También tendrían que utilizar una gran cantidad de fuerza muscular para acelerar los brazos y las manos hacia atrás lo bastante rápidamente para mantener la presión contra el agua que habían puesto en movimiento. Dado que la distancia es corta y los miembros deben acelerar rápidamente, el tiempo requerido para que los brazos recorriesen esta distancia también sería corto. Por lo tanto, los nadadores se desplazarían sólo una corta distancia hacia delante con cada brazada y necesitarían frecuencias rápidas de ciclo para ser competitivos. Por consiguiente, parece razonable que, comparado con empujar directamente hacia atrás, realizar la brazada con una trayectoria más larga con menos esfuerzo muscular compensaría más que adecuadamente la pequeña cantidad de fuerza propulsora que pudieran perder. Si, como sugiere Bixler (1999), los nadadores pueden generar casi la misma cantidad de fuerza propulsora con un tirón diagonal hacia atrás, parece sensato utilizarlo. Los nadadores deberían poder ahorrar una cantidad significativa de energía aumentando la distancia que recorren por brazada y reduciendo la frecuencia de los ciclos, aunque estos ajustes se pagan con una pequeña reducción de la fuerza propulsora. Sin embargo, sospecho que la cantidad de fuerza propulsora generada con una brazada completa es mayor con una trayectoria de brazada más larga en la que los miembros se mueven diagonalmente hacia atrás que si la generasen con un empuje directo hacia atrás a lo largo de menos distancia.
Otro punto polémico es que los movimientos de brazada laterales y verticales podrían aumentar el arrastre porque causan que el cuerpo sea menos hidrodinámico. Aunque esto sea cierto, cualquier movimiento vertical o lateral del cuerpo que pudiese potencialmente aumentar el arrastre resistivo podría reducirse o eliminarse rotando el cuerpo en el estilo libre y espalda, y ondulándolo en mariposa y, quizá, braza. Ciertas acciones de contrapeso realizadas por las piernas y los brazos también ayudan a fijar una trayectoria recta de manera que el impulso propulsor total ganado por cada ciclo de brazada sea mayor que lo que sería si empujasen directamente hacia atrás.
Se necesitan movimientos de brazada laterales y verticales para aplicar la fuerza de forma más efectiva.
Existen otras razones importantes por las que los nadadores deben incluir movimientos laterales y verticales en sus trayectorias de brazada. Las razones por las que los brazos se mueven hacia arriba y hacia abajo pueden explicarse de la siguiente manera. Después de entrar en el agua, los nadadores del estilo libre y de espalda deben bajar los brazos a una distancia considerable de la superficie del agua, de 50 a 70 cm, para colocarlos mirando hacia atrás para el agarre. Una vez alcanzada la profundidad adecuada para este propósito, deben traer los brazos hacia arriba y sacarlos del agua para prepararlos para otra brazada subacuática. Por consiguiente, los brazos tienen que desplazarse hacia abajo y hacia arriba durante varias fases de la brazada subacuática.
Los nadadores no deben empujar hacia atrás contra el agua con los brazos y las manos mientras descienden hacia la posición del agarre. Sin embargo, deben aplicar la fuerza contra el agua cuando ascienden, y suelen hacerlo. Los nadadores al parecer escogen dar la brazada diagonalmente hacia arriba y hacia atrás en lugar de directamente hacia atrás, de manera que las manos estén preparadas para salir del agua cuando ha acabado su capacidad de producir una fuerza propulsora. Si empujasen los brazos directamente hacia atrás desde la posición del agarre, la fase propulsora de cada brazada terminaría con los brazos a una profundidad de 50 a 70 cm, y causarían una cantidad considerable de arrastre resistivo en su camino hacia la superficie. Comparado con dar la brazada diagonalmente hacia arriba y hacia atrás al subir a la superficie, arrastrar los brazos hacia arriba a través del agua probablemente reduciría la velocidad media de avance por brazada.
Las razones más probables de los movimientos laterales de los brazos son las siguientes. Los nadadores deben desplazar los brazos hacia fuera y hacia dentro para aplicar mejor las fuerzas propulsoras durante cada fase de la brazada. Por ejemplo, los nadadores pueden desplazar los brazos hasta la posición del agarre más rápidamente y con menos arrastre resistivo si los mueven hacia el lado separándolos del cuerpo, en lugar de directamente debajo de la línea media durante la primera mitad de la brazada subacuática. Luego, en aquellos estilos en los que es factible, necesitan traer las manos por debajo de la línea media donde puedan aplicar la propulsión más efectivamente en medio de la brazada. Finalmente, en mariposa y el estilo libre, deben sacar las manos hacia fuera desde debajo del cuerpo para llevarlas a la superficie para la próxima brazada.
Son necesarios movimientos diagonales de brazada para superar la inercia.
La última razón que justifica los movimientos diagonales de brazada se relaciona con el hecho de que los nadadores pueden reducir el esfuerzo muscular mediante la superación de la inercia de los miembros con cambios graduales de dirección. La inercia es la expresión del primer principio del movimiento de Newton, el principio de la inercia, que puede definirse así: una parte del cuerpo que se mueve en una dirección particular seguirá moviéndose en esa dirección hasta que la aplicación de la fuerza muscular la obligue a cambiar de dirección (Hay y Reid, 1988).
La fuerza necesaria para cambiar de dirección puede reducirse considerablemente haciéndolo gradualmente a lo largo de una mayor distancia en lugar de hacerlo repentinamente en una distancia corta. Repentinos cambios de dirección requieren un esfuerzo muscular adicional por parte de los nadadores para moverse en una dirección y luego acelerar en otra. Repentinos cambios de dirección también causan que el momento de la fuerza angular se aplique al cuerpo suspendido en el agua perturbando su alineación y aumentando la resistencia del agua contra su desplazamiento hacia delante. En cambio, se requiere menos esfuerzo para superar la inercia si se realizan los cambios en las direcciones de los miembros gradualmente y a lo largo de una mayor distancia. Se logra esto empezando el cambio de dirección antes de que haya terminado el movimiento en la dirección anterior, algo que se conoce con el término de redondear. No hace falta frenar cuando un movimiento se redondea; ni es necesaria una aceleración repentina e importante en la nueva dirección. Se puede realizar el cambio de dirección desacelerando gradualmente, sin parar el movimiento en una dirección, seguido de una aceleración gradual no repentina en la nueva dirección.
¿Realizan los nadadores movimientos de remada o de pala en el agua?
Una vez que comprendí por qué los nadadores utilizaban trayectorias diagonales de brazada en lugar de movimientos rectos hacia atrás, la pregunta siguiente que había que contestar era cómo estaban utilizando sus miembros para desplazar el agua hacia atrás. Esta pregunta alude directamente al problema de cómo ejercen los nadadores la fuerza propulsora. ¿Desplazan el agua hacia atrás remando los bordes de las manos lateral y verticalmente como las paletas de una hélice, o empujándolas por el agua diagonalmente hacia atrás como palas? La respuesta a esta pregunta depende de la definición que se da a los términos de remos y palas. Remar en su definición más estricta significa movimientos de brazada parecidos a una hélice que se realizan en direcciones lateral y vertical sin ningún componente que vaya hacia atrás; mientras que el movimiento de una pala en su significado más estricto implica empujes rectos hacia atrás sin ningún componente vertical ni lateral. Evidentemente, los movimientos diagonales utilizados durante las fases propulsoras de la brazada contienen elementos de movimientos que podrían describirse con ambas palabras. Por consiguiente, si se define remar como cualquier patrón de movimientos de los miembros que no vayan directamente hacia atrás, se considerarán las brazadas de los nadadores como remadas. Sin embargo, si defines los movimientos hacia atrás de los brazos de los nadadores como los de una pala, aunque contengan algunos componentes laterales y verticales, dirás que los nadadores utilizan movimientos de pala.
El término que escojan los entrenadores debería ser uno que transmita la esencia del esfuerzo propulsor. Creo que definir los movimientos de brazada como si fueran movimientos de pala es más apropiado para esto que describirlos como remadas. Existen tres razones principales por esta preferencia. Explicaré cada una de ellas en las siguientes tres secciones.
Existen bastantes pruebas de que el arrastre contribuye más que la sustentación a las fuerzas propulsoras producidas por los nadadores.
Los nadadores se propulsan con una combinación de fuerzas de sustentación y de arrastre. Podrías preguntarte por qué es importante saber cuál de las fuerzas, sustentación o arrastre, contribuye más. Es porque la fuerza que contribuye más determina el énfasis del movimiento propulsor. Si las fuerzas de sustentación contribuyen más, los nadadores deberán ejecutar grandes movimientos laterales y verticales de tipo hélice con los miembros con un componente mínimo que vaya hacia atrás. En otras palabras, los nadadores utilizarían movimientos de remada para propulsarse. En cambio, si la contribución de la fuerza de arrastre es mayor, como creo yo, los nadadores deberán realizar todos sus esfuerzos para empujar el miembro hacia atrás contra el agua durante las fases propulsoras de la brazada. En otras palabras, deberían utilizar los miembros como palas para empujar hacia atrás contra el agua, aunque sus trayectorias en la brazada contendrían, necesariamente, algunos componentes laterales y verticales. Con esto en mente, ahora compartiré la investigación que me llevó a adoptar mi opinión actual de que los nadadores utilizan sus miembros como palas para empujar hacia atrás contra el agua.
Estudios de sustentación y arrastre con modelos de manos de escayola.
Las fuerzas de sustentación y arrastre son vectoriales porque tienen tanto dirección como magnitud. Ambas cualidades deben describirse de forma precisa para comprender su relación con la producción de las fuerzas propulsoras. No hay dificultades para determinar las direcciones de las fuerzas de sustentación y de arrastre que los nadadores producen durante varias fases de sus brazadas subacuáticas. Las fuerzas de arrastre se producen en la dirección opuesta al desplazamiento de las manos, y la fuerza de sustentación se ejerce en dirección perpendicular a la fuerza de arrastre. La dificultad reside en determinar la magnitud de estas dos fuerzas.
La magnitud de cada una se indica en la longitud de su respectivo vector. Si la fuerza de sustentación fuera la mayor de las dos, su vector se dibujaría proporcionalmente más largo en una medida que representase la diferencia entre el mismo y el vector de la fuerza de arrastre. Si la propulsión fuera predominantemente a causa de la fuerza de arrastre, el vector del arrastre sería el más largo. La figura 1.13 muestra gráficos de los vectores de (a) la propulsión predominantemente por sustentación y (b) la propulsión predominantemente por arrastre. Mi argumento es que la propulsión en la natación es predominantemente por arrastre. Creo que los buenos nadadores escogen intuitivamente las direcciones de brazada y los ángulos de ataque de las manos que maximizan la cantidad de fuerza de arrastre que pueden producir, y que al hacerlo utilizan los brazos y las manos como palas para empujar el agua hacia atrás.

Figura 1.13. Ejemplos de propulsión con la sustentación como fuerza dominante y de propulsión con el arrastre como fuerza dominante durante el movimiento ascendente en el estilo libre. La propulsión con la sustentación como fuerza dominante se ilustra con el vector en (a). La propulsión con el arrastre como fuerza dominante se ilustra con el vector en (b).
Existen varias razones que inducen a creer que los nadadores escogen combinaciones de trayectorias de brazada y ángulos de ataque que maximizan la contribución de las fuerzas de arrastre a la fuerza de propulsión que producen. Los grandes ángulos de ataque de las manos que utilizan durante la fase propulsora de la brazada es una. Los grandes ángulos de ataque producen más fuerzas de arrastre que fuerzas de sustentación. Varios estudios lo han demostrado suspendiendo modelos de escayola en canales de agua o desplazándolos por el agua con muchos ángulos de ataque diferentes. Los resultados de uno de estos estudios (Schleifhauf, 1979) se ilustran en la figura 1.14.
Schleifhauf suspendió un modelo de escayola de la mano de un nadador en un canal de agua y hacía fluir el agua con una velocidad constante de 2,13 m/s. Repitió el mismo procedimiento con 10 incrementos con la mano colocada en ángulos de ataque que variaban desde 0º hasta 90º. También colocó la mano con varias orientaciones diferentes – de manera que el agua fluía desde el lado del pulgar hasta el lado del meñique, desde el lado del meñique hasta el lado del pulgar, desde las yemas de los dedos hasta la muñeca y desde la muñeca hasta las yemas de los dedos– para simular todos los diferentes movimientos de la mano en la brazada. Estas diferentes orientaciones a la corriente de agua se denominan ángulos de orientación. El gráfico ilustrado en la figura 1.14 muestra los coeficientes medios de las fuerzas de sustentación y arrastre que se producían según el ángulo de orientación, para cada ángulo de ataque.
Es interesante destacar que los coeficientes de sustentación para la mano de escayola eran mayores que los de arrastre con ángulos de ataque de entre 10º y 30º. Las fuerzas de sustentación y arrastre eran casi iguales con un ángulo de ataque de 40º y los coeficientes de la fuerza de arrastre predominaban con ángulos mayores de ataque. Existen pruebas, que presentaré más adelante, que demuestran que la mayoría de los buenos nadadores, de los que se dispone de esta información, utilizan ángulos de ataque de las manos de entre 50º y 70º durante la fase propulsora de su brazada subacuática en por lo menos tres de los cuatro estilos competitivos. Braza es la única excepción posible, aunque creo que cuando se disponga de más datos encontraremos que la mayoría de los bracistas también utilizan grandes ángulos de ataque de las manos. Por lo tanto, los nadadores parecen escoger ángulos de ataque que maximizarán la producción de las fuerzas de arrastre en detrimento de las fuerzas de sustentación.

Figura 1.14. Coeficientes de sustentación y arrastre medidos con una mano de escayola suspendida en un canal de agua. Los coeficientes ilustrados son medias calculadas por ordenador para una gama completa de ángulos de orientación con una variedad de ángulos de ataque comprendidos entre 0º y 90º.
Adaptada de Schleihauf, 1979.
Medir los valores absolutos de la fuerza de sustentación y arrastre.
Otra razón que induce a creer que los nadadores intuitivamente maximizan las aportaciones de la fuerza de arrastre tiene que ver con el hecho de que los coeficientes pueden no ser la mejor manera de estimar las contribuciones relativas de las fuerzas de sustentación y arrastre a la propulsión. “Un alto coeficiente no significa necesariamente que se aplica una fuerza grande” (Bixler, 1999). Los coeficientes son, después de todo, sólo índices que expresan la capacidad hidrodinámica de un objeto para producir sustentación o minimizar el arrastre. Por esta razón, un análisis de las magnitudes reales de las fuerzas de sustentación y arrastre producidas con cada ángulo de ataque debería proporcionar una representación más precisa del papel de cada una en la propulsión del nadador. Tanto Cappaert (1992) y Berger et al., (1995) como Bixler (1999) presentaron las magnitudes de las fuerzas de sustentación y arrastre en tres estudios distintos. Sus resultados proporcionan una evidencia aún más convincente de que la fuerza de arrastre es la fuerza propulsora dominante en la natación humana.
Utilizando modelos de manos que fueron arrastrados por el agua con velocidades de entre 0,3 y 3 m/s, Berger, de Groot y Hollander mostraron que los valores absolutos para las fuerzas de arrastre producidas por los modelos de las manos eran superiores a las de las fuerzas de sustentación con un margen considerable en todos los ángulos de ataque. Los valores para las fuerzas de arrastre eran ligeramente más del doble de las de sustentación, incluso con ángulos de ataque de entre 20º y 40º, y las fuerzas de arrastre eran más del triple con mayores ángulos de ataque.
En el segundo estudio, Cappaert suspendió el modelo de una mano en un canal de nado con una variedad de ángulos de ataque e hizo fluir la corriente de agua a velocidades de 1, 1,5 y 2 m/s. No presentó los valores absolutos para las fuerzas de sustentación y arrastre con cada ángulo de ataque, sino que presentó el valor medio para cada fuerza en todos los ángulos de ataque. Sus resultados muestran que la fuerza media de arrastre era casi seis veces mayor que la fuerza de sustentación con los ángulos de ataque que midió (17,5 N para las fuerzas de arrastre comparado con 3,2 N para las fuerzas de sustentación).
Bixler también calculó las magnitudes reales de las fuerzas de sustentación y arrastre producidas por su modelo computerizado de la mano y el brazo con una serie de ángulos de ataque. Las fuerzas de arrastre fueron bastante superiores a las de sustentación y con una diferencia considerable en todos los ángulos de ataque cuando el lado del pulgar era el borde de ataque en un movimiento hacia dentro simulado. Las fuerzas de arrastre para la mano y el brazo combinados aumentaron desde aproximadamente 30 N hasta más de 60 N al aumentar el ángulo de ataque de 0º hasta 75º, mientras que las fuerzas de sustentación estaban en el rango de 20 a 30 N con los mismos ángulos. Las fuerzas de sustentación y arrastre producidas orientando la mano de manera que el lado del meñique fuera el borde del ataque mostraron cifras similares, aunque las de arrastre fueron ligeramente superiores. Las fuerzas de arrastre estuvieron en el rango de 35 a 50 N con ángulos de ataque entre 45º y 75º, mientras que las fuerzas de sustentación estuvieron entre 25 y 34 N.
Finalmente, Bixler estimó las fuerzas propulsoras que podía producir su modelo de la mano y el brazo con varios ángulos de ataque. Calculó que las fuerzas de arrastre contribuyeron aproximadamente el 70% de la fuerza propulsora en los ángulos de ataque más comúnmente utilizados por los nadadores cuando el lado del pulgar era el borde de ataque en un movimiento hacia dentro simulado. Sin embargo, sus cálculos demostraron que las fuerzas de sustentación y arrastre solían contribuir de igual forma cuando el lado del meñique era el borde de ataque en un movimiento hacia fuera simulado. También demostraron que las mayores cantidades de fuerza propulsora se produjeron cuando los ángulos de ataque de la mano estaban entre 60º y 90º cuando las manos estaban casi perpendiculares a la dirección del desplazamiento.
Estos tres estudios indican que cuando se miden los valores absolutos de las fuerzas de sustentación y arrastre con modelos de las manos, las fuerzas de arrastre son mucho mayores que las otras. El estudio de Bixler fue el único que sugirió que las fuerzas de sustentación podrían desempeñar un mayor papel en la natación humana, y sólo en el movimiento hacia fuera cuando el lado del meñique era el borde de ataque. Sin embargo, sólo hay una situación en la natación competitiva en la que los nadadores realmente mueven las manos por el agua con el lado del meñique como borde de ataque, y esto es cuando los nadadores de espalda mueven las manos hacia abajo casi al terminar su brazada subacuática. Cuando los nadadores de mariposa y estilo libre sacan las manos hacia fuera desde debajo del cuerpo cerca del final de su brazada subacuática, las mueven también hacia arriba de manera que la palma de la mano es el borde de ataque en lugar del lado del meñique. En mariposa y braza, los nadadores suelen utilizar las yemas de los dedos como borde de ataque cuando mueven las manos hacia fuera en la primera parte de la brazada, y no el lado del meñique.
Medir las fuerzas de sustentación y arrastre en condiciones de corrientes de agua inestables.
Una cosa que hay que recordar en los estudios que acabo de mencionar es que fueron realizados en condiciones de un flujo estable de agua. En los estudios de Schleihauf y Cappaert, se sostuvieron mode-los de manos en posiciones estacionarias y con ángulos de ataque invariables mientras que el agua fluía a velocidades constantes. Cuando Berger y sus asociados tomaron sus datos, el modelo de la mano se movía a una velocidad constante sin cambiar el ángulo de brazada ni el ángulo de ataque. Y en el estudio de Bixler, su modelo computerizado de la mano y del brazo permanecía estacionario con varios ángulos de ataque y ángulos de orientación mientras que se simulaba el flujo del agua.
Existen dos dificultades principales cuando se miden las fuerzas en condiciones de un flujo de agua o un movimiento de un miembro estables. La más importante es que el flujo del agua alrededor de la mano y del brazo en la natación humana no es estable. Ni los miembros ni el agua fluyen a una velocidad constante, sino que están constantemente acelerando y desacelerando. Además, diferentes segmentos de los miembros se desplazan por el agua con distintas velocidades según su distancia de la articulación del hombro, que es el centro de rotación del brazo. Estas velocidades diferentes y constantemente cambiantes de los miembros también hacen que el agua fluya alrededor del brazo a velocidades distintas.
La segunda dificultad concierne a la complicada relación tridimensional de la brazada. Los miembros de los nadadores no se desplazan por el agua en direcciones constantes con un ángulo de ataque invariable. Cambian de dirección y de ángulo de ataque varias veces durante cada brazada subacuática. Las combinaciones constantemente cambiantes de las direcciones seguidas en la brazada, con respecto a hasta qué punto el brazo se desplaza hacia abajo, hacia dentro, hacia fuera o hacia arriba en cualquier momento dado, añadidas a las combinaciones casi interminables de ángulos de desplazamiento, ángulos de ataque de los miembros y velocidades cambiantes de los miembros utilizadas durante una brazada subacuática, hacen que sea extremadamente difícil simular los movimientos reales del miembro del nadador al realizar la brazada con un modelo en un canal de agua.
Consciente de estas dificultades, Thayer (1990) trató de simular una brazada real con un modelo de la mano y del brazo impulsado por un motor para medir las fuerzas de sustentación y arrastre en condiciones de una corriente de agua inestable. Ató 127 sensores de presión a su modelo de la mano y del brazo para medir, entre otras cosas, estas dos fuerzas. Lo desplazó por el agua de manera que simulase los cambiantes ángulos de ataque y de desplazamiento utilizados por los nadadores durante las varias fases subacuáticas de la brazada del estilo libre. Su modelo de la mano y del brazo estaba constantemente cambiando su orientación con respeto al agua y sus ángulos de ataque al desplazarse por el agua, de igual manera que una mano y un brazo real lo harían durante la natación. Este procedimiento causó continuos cambios en la velocidad y la turbulencia del agua que rodeaba el modelo, creando las condiciones de una corriente de agua inestable.
Una vez que hubo recogido los datos con el modelo móvil de la mano y del brazo, Thayer también midió las fuerzas de sustentación y de arrastre producidas por el mismo modelo en condiciones de una corriente estable de agua utilizando el método de Schleihauf y Cappaert. Luego comparó las medidas de sustentación y arrastre con un flujo estable con los valores medidos con el modelo móvil de la mano y del brazo en condiciones de corrientes inestables. Sus resultados se muestran en los gráficos presentados en la figura 1.15.
La comparación de las dos series de medidas de la fuerza de arrastre reveló que las fuerzas de arrastre producidas por el modelo móvil de la mano y del brazo eran de 10 a 20 N superiores a las fuerzas de arrastre medidas cuando el agua fluía alrededor del mismo modelo con una velocidad constante. En cambio, las fuerzas de sustentación medidas con el modelo móvil eran inferiores, en la parte media de la brazada subacuática, a las fuerzas de sustentación medidas con ángulos de orientación y de ataque similares cuando el modelo de la mano y del brazo estaba estacionario. Las fuerzas de sustentación para el modelo de la mano y del brazo eran superiores a los valores en condiciones de una corriente estable cerca del final de la brazada, pero sólo ligeramente. En términos menos técnicos, cuando se compara con un modelo de una mano y un brazo suspendido en un canal con agua fluyendo, un modelo que se desplaza a través del agua con una brazada simulada crea considerablemente más fuerzas de arrastre en todas las fases de la brazada subacuática y considerablemente menos fuerzas de sustentación durante la parte mediana de la brazada. Estos resultados sugieren que las fuerzas de arrastre creadas cuando los nadadores están realmente desplazándose por el agua serán mayores que las fuerzas de arrastre creadas cuando se desplazan modelos de manos y brazos por el agua en una posición estática a una velocidad constante o cuando el agua fluye alrededor de ellos con velocidad uniforme. En otras palabras, los nadadores están probablemente produciendo bastante más fuerza de arrastre durante la natación real libre que lo que indican los estudios que utilizan modelos de manos y brazos de escayola.
Las fuerzas de arrastre producidas por el modelo móvil de la mano y del brazo en el estudio de Thayer eran dos o tres veces mayores que las fuerzas de sustentación producidas durante todas las fases de la brazada subacuática simulada. Por lo tanto, puede que los atletas estén produciendo dos o tres veces más arrastre que sustentación con sus manos y sus brazos en la natación real.
Los patrones de velocidad muestran que los nadadores aceleran el cuerpo hacia delante sólo cuando los brazos se desplazan hacia atrás.
Se cree generalmente que las manos y los brazos de los nadadores no se desplazan hacia atrás, o por lo menos sólo lo hacen un poco, durante la brazada subacuática. Por lo tanto, lógicamente se podría preguntar: “¿Cómo pueden los nadadores empujar el agua hacia atrás si no están moviendo sus miembros hacia atrás?”. La respuesta a esta pregunta es que los miembros efectivamente se desplazan hacia atrás, por lo menos durante las fases propulsoras de la brazada subacuática.
Figura 1.15. Una comparación de las fuerzas de sustentación y de arrastre producidas por un modelo de una mano desplazándose por el agua y un modelo de una mano suspendido en una corriente de agua de velocidad estable.
Adaptada de Thayer, 1990.
La noción de que las manos de los nadadores no se desplazaban hacia atrás durante la brazada subacuática se sacó de las trayectorias de brazada como la que se presenta en la figura 1.16. Se presenta una vista lateral de la trayectoria de la brazada de un nadador del estilo libre, dibujada en relación con un punto fijo de la piscina. Se puede observar que la mano del nadador sale del agua por delante del punto en el que entró en ella. Las ilustraciones como ésta tuvieron una influencia significativa en aquellos de nosotros que llegamos a aceptar la noción de que la sustentación representaba el mecanismo principal de propulsión en la natación humana. Estas trayectorias eran nuevas. No sabíamos qué partes de la trayectoria eran propulsoras y cuáles no. Por lo tanto, muchos de nosotros entendimos el hecho de que las manos dejasen el agua por delante del punto en el que entraban como una evidencia de que los nadadores no empujaban sus manos hacia atrás durante la brazada subacuática.
En realidad, el brazo se estira hacia delante después de entrar en el agua mientras que el otro brazo termina su brazada subacuática. Luego se desplaza hacia abajo y hacia delante para llegar al punto del agarre, donde los nadadores empiezan a acelerar el cuerpo hacia delante. Ambos acontecimientos hacen que las manos terminen bastante por delante de su punto de entrada en el agua antes de que los nadadores empiecen realmente a acelerar su cuerpo hacia delante con ellos. Cuando lo hacen, la trayectoria de la brazada muestra que la mano realmente se desplaza diagonalmente hacia atrás durante un buen trecho antes de salir del agua.
Cuando se combinan las trayectorias de brazada como la que se ilustra en la figura 1.16 con el patrón de velocidad de avance del centro de masas del mismo nadador, se hace evidente que los nadadores sólo aceleran el cuerpo hacia delante durante las fases de la brazada subacuática cuando las manos se desplazan hacia atrás. La ilustración presentada en la figura 1.17 muestra la vista lateral de la trayectoria, di-bujada en relación con un punto fijo de la piscina, de la parte subacuática de la brazada izquierda de Kieren Perkins. El gráfico ilustrado a continuación muestra su velocidad de avance durante aquella brazada, registrada durante su carrera récord de 1.500 m en los Juegos Olímpicos de 1992.
Figura 1.16. Vista lateral de la trayectoria de la brazada en el estilo libre ilustrando los puntos de entrada y salida relativos al agua.
Adaptada de Schleihauf, 1997.
Después de completar la fase propulsora de la brazada derecha, la velocidad de avance de Perkins desacelera al descender su mano izquierda hacia abajo y hacia delante. Su velocidad de avance sigue desacelerando hasta que su mano empieza a desplazarse hacia atrás cerca del final de ese movimiento, momento en el que realiza el agarre. Entonces su velocidad de avance aumenta, en dos tiempos, durante la parte media de su brazada subacuática hasta que la mano empieza a desplazarse hacia delante de nuevo al acercarse a la superficie del agua.
Este gráfico demuestra claramente que los nadadores no están acelerando el cuerpo hacia delante con los brazos desde el instante en que las manos entran en el agua delante de ellos hasta que salen del agua hacia atrás cerca de las caderas (con la excepción de braza). También muestra algo que he visto en todos los estilos competitivos: que el cuerpo sólo acelera hacia delante cuando las manos están desplazándose hacia atrás durante la brazada subacuática.
Los patrones de velocidad mostrados en las figuras 1.18, 1.19, 1.20 y 1.21 ilustran este punto en los restantes tres estilos competitivos. Muestran claramente que los nadadores sólo aceleran su cuerpo hacia delante cuando las manos se desplazan diagonalmente hacia atrás. En cambio, la velocidad de avance se reduce siempre que las manos se desplazan hacia delante, como en la parte inicial de su brazada subacuática, cuando las manos y los brazos están acercándose a la posición del agarre, y al final de la brazada subacuática cuando las manos y los brazos empiezan a moverse hacia delante justo antes de salir del agua.
Se construyeron estos patrones de la velocidad de avance como parte de un análisis biomecánico de los medallistas en los Juegos Olímpicos de verano de 1992. Cappaert (1993) midió los ángulos de ataque de las manos y las velocidades de avance de los medallistas como parte de un análisis biomecánico más amplio de sus brazadas. También elaboró las trayectorias de las manos para los mismos nadadores, realizando los cálculos a partir de las películas de vídeo tomadas durante la misma competición olímpica.
Figura 1.17. Vista lateral de la trayectoria de la brazada y el gráfico de la velocidad de avance de la brazada izquierda de Kieren Perkins.
Adaptada de Cappaert, 1993.
El patrón de la velocidad de avance de Perkins se ilustra en la figura 1.17. Los patrones de otros cuatro nadadores, uno de cada estilo competitivo, ilustran la relación entre las direcciones de la brazada y la velocidad de avance. Los nadadores son: Alexander Popov en el estilo libre, Pablo Morales en mariposa, Martín López-Zubero en espalda, y Mike Barrowman en braza.
Se ilustran la trayectoria y el gráfico de la velocidad de avance de la brazada derecha de Alexander Popov desde la vista lateral en la figura 1.18. Se calcularon tanto la trayectoria de la brazada como el registro de la velocidad del centro de masas a partir de películas de vídeo tomadas durante la prueba de 100 m estilo libre. El momento de la trayectoria en el que Popov empieza a acelerar hacia delante está marcado con la letra A. El final de la fase propulsora de su brazada subacuática está marcado en la trayectoria con la letra B. Los mismos indicadores A y B están marcados en el registro de la velocidad para mostrar el efecto de los movimientos de sus brazos en la velocidad de avance.
Como se ve claramente, empieza a acelerar su cuerpo hacia delante al acercar su mano derecha a su punto más profundo y, lo que es más importante, cuando empieza a desplazarse hacia atrás en el punto A. La propulsión efectiva continúa, aunque no sin algunos cortos períodos de desaceleración, hasta que la mano se acerca a la superficie del agua y deja de desplazarse hacia atrás en el punto B, preparando su salida del agua.
Figura 1.18. Vista lateral de la trayectoria de la brazada y gráfico de la velocidad de avance de la brazada derecha de Alexander Popov. Los números que están por encima de los picos de propulsión del movimiento hacia dentro y del movimiento hacia fuera indican el ángulo medio de ataque de la mano durante esa fase propulsora particular.
Adaptada de Cappaert, 1993.
Se ilustran un gráfico y una trayectoria de la mano similares del nadador de mariposa Pablo Morales en la figura 1.19. Estos datos se recogieron de una película de vídeo tomada durante la prueba de 100 m mariposa en los Juegos Olímpicos de 1992. De nuevo, las fases propulsoras de su brazada subacuática empiezan en el punto A y terminan en el punto B. Sus manos se desplazan hacia delante y hacia fuera durante un corto período de tiempo después de entrar en el agua. La propulsión empieza en el punto A cuando se están desplazando hacia abajo y hacia atrás. Termina antes de que hayan acabado de empujar hacia atrás en el punto B, donde también marcan un cambio de dirección hacia la superficie.
Se ilustran la trayectoria de la mano izquierda y el gráfico de la velocidad de avance del nadador de espalda Martín López-Zubero en la figura 1.20 en la página 39. Estos datos fueron recogidos durante las eliminatorias de la prueba de 200 m espalda de los Juegos Olímpicos de 1992.
La propulsión empieza para López-Zubero en el punto A, poco después de la entrada, cuando la mano empieza a desplazarse hacia atrás además de hacia abajo. Continúa acelerando su cuerpo hacia delante a través de tres picos de propulsión, mientras que la mano se desplaza diagonalmente hacia atrás. La propulsión termina en el punto B cuando la mano empieza a desplazarse hacia delante durante su ascensión hacia la superficie.
Figura 1.19. Vista lateral de la trayectoria de la brazada y el registro de la velocidad del centro de masas de Pablo Morales. Los números que están por encima de los picos de propulsión indican el ángulo medio de ataque de las manos durante esa fase propulsora particular.
Adaptada de Cappaert, 1993.
El gráfico de la velocidad del centro de masas y la trayectoria de la mano ilustrados en la figura 1.21 (pá-gina 40) corresponden al bracista Mike Barrowman. La trayectoria está dibujada desde abajo para poder ver los movimientos de la mano hacia delante y hacia atrás. Estos datos se recogieron de películas de vídeo tomadas durante las eliminatorias de la prueba de 200 m braza en los Juegos Olímpicos de verano de 1992.
Las trayectorias de la mano de los bracistas son más perpendiculares a su desplazamiento hacia delante que las de los nadadores de otros estilos. No obstante, se puede ver que Barrowman no empieza a acelerar su cuerpo hacia delante hasta el punto A, donde la dirección de sus manos llega a ir un poco hacia atrás además de hacia fuera. Desde el punto A, las manos se desplazan hacia fuera y hacia atrás y luego hacia dentro y hacia atrás hasta el punto B, donde empieza a desacelerar. Su velocidad de avance continúa con un ritmo acelerado siempre que sus manos se desplazan hacia atrás. Es importante señalar, sin embargo, que desacelera cuando sus manos se desplazan hacia delante, como en la última parte del tirón del brazo antes del recobro.
Me parece, viendo estas trayectorias de las manos y estos gráficos de la velocidad de avance, y cientos de otros que he estudiado, que las manos de los nadadores tienen que desplazarse diagonalmente hacia atrás para que puedan acelerar su cuerpo hacia delante. La velocidad de avance del cuerpo disminuye durante la primera parte de la brazada subacuática y también cerca del final, cuando las manos se desplazan diagonalmente hacia delante. Sólo acelera hacia delante durante aquellas partes de la brazada subacuática en que las manos se desplazan hacia atrás, aunque no directamente hacia atrás. Las varias desaceleraciones entre las fases propulsoras de las brazadas subacuáticas (entre los puntos A y B en las figuras 1.18 a 1.21) corresponden, mayormente, a períodos en los que los nadadores realizaron cambios importantes en la dirección que seguían sus manos y brazos. Aunque sus manos normalmente estaban desplazándose hacia atrás durante estos cambios de dirección, se reducía la velocidad de las mismas y es-to es lo que causó una reducción momentánea de la velocidad de avance de su cuerpo que seguía hasta que las manos aceleraban otra vez en una nueva dirección.
Figura 1.20. Vista lateral de la trayectoria de la brazada y el registro de la velocidad del centro de masas de la brazada izquierda de Martín López-Zubero. Los números que están por encima de los picos de propulsión indican el ángulo medio de ataque de la mano izquierda durante esa fase propulsora particular.
Adaptada de Cappaert, 1993.
Se podría argumentar que es mejor remar que usar las manos como palas porque los nadadores están desplazando sus manos diagonalmente hacia atrás y porque las fuerzas de sustentación contribuyen a su fuerza propulsora cuando aceleran hacia delante. Sin embargo, el hecho de que sólo aceleran hacia delante cuando los miembros se desplazan hacia atrás indica, por lo menos a mí, que están tratando de maximizar la contribución de las fuerzas de arrastre a sus esfuerzos propulsores. Esto se logra mejor utilizando las superficies más amplias posibles para empujar hacia atrás contra el agua. En otras pala-bras, el rendimiento es mayor cuando los nadadores utilizan los miembros como palas, aunque los desplazan con trayectorias circulares por el agua.
Un apoyo adicional a la teoría del uso de las manos como palas viene del hecho de que estos patrones de velocidad también sugieren que movimientos puros de remada, los que son enteramente laterales y verticales sin ningún componente hacia atrás, no aceleran a los nadadores hacia delante. Demuestran que los nadadores sólo se aceleran hacia delante cuando las manos se desplazan hacia atrás.
Los ángulos de ataque de las manos utilizados por los nadadores parecen ser una tentativa de mantener las palmas de las manos orientadas hacia atrás mientras que las desplazan diagonalmente por el agua.
Otra indicación que sugiere que los buenos nadadores están utilizando sus manos y brazos como palas en lugar de formas con perfil de ala reside en el hecho de que siempre tienen las manos y los antebrazos mirando hacia atrás, casi perpendiculares a la dirección de su desplazamiento hacia delante, aunque los mueven por el agua con una trayectoria diagonal. Un ejemplo de esta orientación de los miembros está ilustrado en los dibujos (a) y (b) de la figura 1.22, vistas lateral e inferior del nadador que completa el movimiento ascendente de su brazada subacuática. Obsérvese que en ambas vistas los brazos y las manos del nadador están mirando casi directamente hacia atrás. Esta orientación hacia atrás probablemente tiene una influencia significativa en la fuerza propulsora que puede producir, aunque sus brazos realmente están trazando una trayectoria circular. Parece que el nadador está tratando de empujar directamente hacia atrás contra el agua con sus manos y brazos mientras se desplazan diagonalmente hacia arriba, hacia fuera y hacia atrás. En otras palabras, los nadadores no empujan sus brazos directamente hacia atrás en el agua, sino que parecen empujar hacia atrás contra el agua al desplazarse diagonalmente a través de ella.

Figura 1.21. La trayectoria de la brazada y el registro de la velocidad del centro de masas de una brazada de Mike Barrowman. Se muestra la vista inferior de la trayectoria. Los números que están por encima de los picos de propulsión indican el ángulo medio de ataque de las manos durante esa fase propulsora particular.
Adaptada de Cappaert, 1993.
Figura 1.22. El movimiento ascendente en el estilo libre ilustrado desde (a) la vista lateral y (b) la vista inferior. Estas ilustraciones indican la manera en que los nadadores parecen empujar hacia atrás contra el agua mientras que realmente desplazan los brazos y las manos hacia arriba y hacia fuera acercándolos a la superficie. Obsérvese que la mano y el antebrazo del nadador, aunque se desplazan diagonalmente hacia arriba (a) y hacia fuera (b), están mirando hacia atrás.
Desafortunadamente ningún experto en la hidrodinámica ha tratado de explicar el mecanismo que debe estar operando aquí. Sospecho que corrientes sucesivas de moléculas de agua estacionarias o desplazándose lentamente están siendo desplazadas hacia atrás por los movimientos diagonales de los brazos de los nadadores, siempre que el movimiento tenga un componente que se dirija hacia atrás y que las mayores superficies practicables de la palma de la mano y del brazo estén orientadas hacia atrás. Se ilustra este método de desplazar el agua hacia atrás con las flechas dibujadas detrás del brazo del nadador en la figura 1.22. Es interesante notar que Bixler (1999) llegó a una conclusión similar como resultado de su modelo computerizado de las fuerzas fluidas cuando afirmó que, por toda una amplia gama de ángulos de desplazamiento, el único denominador común de la propulsión máxima de la mano era que “la palma debe mirar directamente hacia atrás”. Los ángulos de ataque de la mano que han sido registrados durante la natación quizá no sean las tentativas de los nadadores de realizar movimientos propulsores de brazada como si se tratase de objetos con perfil de ala que maximizan las fuerzas de sustentación. En lugar de esto, pueden ser una tentativa de mantener las manos y los brazos orientados hacia atrás mientras se desplazan en direcciones diagonales durante la brazada subacuática para maximizar las fuerzas de arrastre. Creo ahora que los procedimientos que hay que realizar para acoplar el ángulo de ataque correcto con el ángulo de brazada correcto, presentados por mí y otros, han complicado la enseñanza de la mecánica de los estilos mucho más de lo necesario. Lo único que tienen que hacer los nadadores es mantener las manos y los brazos en una posición mayormente mirando hacia atrás mientras los desplazan diagonalmente por el agua, y encontrarán que utilizan los ángulos de ataque correctos de forma bastante natural.
La manera más fácil para los nadadores de encontrar y mantener el ángulo correcto de ataque con la mano durante una fase particular de la brazada subacuática es sentir que están trazando la trayectoria tradicional en forma de S relativa al cuerpo. También deben sentir que las manos y los brazos se mantienen casi perpendiculares a la dirección en la que se desplazan los miembros en relación con el cuerpo. Las ilustraciones presentadas en las figuras 1.23 y 1.24 quizás ayuden a clarificar este punto.
Las dos trayectorias de brazada presentadas en la figura 1.23 muestran la vista inferior de la brazada derecha de una nadadora de estilo libre. La trayectoria se dibuja (a) en relación con el cuerpo de la nadadora y (b) en relación con un punto fijo de la piscina. Trayectorias similares a la presentada en (a) representan lo que los nadadores sienten que hacen. En realidad, sin embargo, las manos están desplazándose hacia dentro y hacia fuera por debajo del cuerpo con una trayectoria más parecida a la ilustrada en (b). Las manos se desplazan más hacia dentro y hacia fuera que hacia atrás porque el cuerpo también está desplazándose hacia delante pasando por los brazos al mismo tiempo que los brazos están desplazándose diagonalmente hacia atrás.
Evidentemente, las trayectorias que usan los nadadores son considerablemente más diagonales que las que sienten que utilizan. Por lo tanto, si mantienen las palmas de las manos perpendiculares a la dirección en la que creen que se están desplazando los brazos, los ángulos de ataque de las manos serán realmente menos que perpendiculares a su verdadera dirección. De hecho, los ángulos de ataque reales variarán entre 40º y 70º de la dirección real en la que se están desplazando, casi perpendiculares a su movimiento hacia delante. Como resultado, no estarán empujando tanta agua hacia arriba o hacia fuera como se podría suponer, sino que la estarán empujando bastante hacia atrás.

Figura 1.23. Dos trayectorias de la brazada del estilo libre, dibujadas (a) en relación con el cuerpo de la nadadora y (b) en relación con un punto fijo de la piscina.
Las ilustraciones presentadas en la figura 1.24 ayudan a clarificar este punto complicado. Muestran las mismas trayectorias de la brazada derecha ilustradas en la figura 1.23, pero en esta figura las manos de la nadadora están superpuestas encima de la trayectoria. Las manos en la figura 1.24a muestran los ángulos de ataque que los nadadores sienten que están utilizando cuando visualizan sus brazadas en relación con el cuerpo. Siempre son perpendiculares a la dirección en la que creen que se están desplazando sus manos. Las inclinaciones de las manos presentadas en las figuras 1.24b y 1.24c son idénticas a las de la figura 1.24a, pero las trayectorias están dibujadas en relación con un punto fijo de la piscina y representan las trayectorias reales de la brazada. La parte de la brazada que corresponde al movimiento hacia dentro se ilustra en la figura 1.24b, y el movimiento hacia arriba, en la figura 1.24c. Obsérvese que los ángulos de ataque de las manos se vuelven menos perpendiculares a la dirección real de su desplazamiento cuando se dibujan las trayectorias en relación con un punto fijo de la piscina.
La cuestión es que los nadadores sienten desde un punto de vista cinestésico como si estuviesen empujando las manos y los brazos hacia atrás contra el agua como palas, mientras se desplazan hacia dentro y hacia fuera por debajo del cuerpo. Sin embargo, las manos nunca están realmente perpendiculares a su verdadera dirección de desplazamiento, sino que en realidad están inclinadas con menos ángulo de ataque. Creo que es una tentativa de empujar el agua directamente hacia atrás con las manos y los brazos, aunque estén desplazándose diagonalmente por el agua. No pueden ni deben mantener sus miembros mirando directamente hacia atrás. Deben girarlos ligeramente hacia fuera, hacia dentro, hacia abajo y hacia arriba en la misma dirección en la que se están desplazando para hacer una pala efectiva, porque el área de superficie de las palmas y de la cara inferior de los brazos que podrían utilizarse para empujar hacia atrás contra el agua se reduciría considerablemente si los miembros mirasen directamente hacia atrás en lugar de estar angula-dos ligeramente en la dirección en la que se están desplazando. Angular los miembros directamente hacia atrás haría que los bordes de las manos cortaran lateral o verticalmente el agua, o, peor aún, podría causar que la parte dorsal de la mano empujase una gran cantidad de agua en alguna dirección que no fuera hacia atrás. Cualquiera de estas situaciones reduciría la velocidad de avance de manera considerable.
Figura 1.24. Trayectorias de la brazada derecha. La ilustración muestra (a) una trayectoria de brazada dibujada en relación con el cuerpo de la nadadora, con las manos superpuestas en puntos del movimiento hacia dentro y hacia arriba. Las manos están inclinadas perpendicularmente a la dirección en la que se desplazan. Las trayectorias de la brazada ilustradas en (b) y (c) están dibujadas en relación con un punto fijo de la piscina. Se ilustra el movimiento hacia dentro en (b) y el movimiento hacia arriba en (c). Obsérvese que cuando las manos de la ilustración se superponen sobre las trayectorias en (b) y (c) se reduce el ángulo de ataque porque la trayectoria verdadera es bastante más diagonal.
Para ser preciso, quiero señalar que las ilustraciones presentadas en las figuras 1.23b y 1.24b y c son sólo ejemplos y no representan las trayectorias de las brazadas y los ángulos de ataque reales utilizados por los nadadores en el estilo libre. Dichas trayectorias son tridimensionales e incluyen movimientos verticales de la mano y del brazo que no se pueden ilustrar en una vista inferior. Sin embargo, creo que estos dibujos ilustran precisamente la relación entre los ángulos de ataque de la mano, además de la diferencia entre las trayectorias de brazada trazadas realmente por los nadadores y las que sienten que están usando.
Todas las respuestas a mis preguntas relacionadas con la propulsión newtoniana me han reforzado la creencia de que el principio de Newton de acción y reacción es principalmente responsable de la propulsión en la natación competitiva.
Hasta ahora, me he concentrado casi exclusivamente en las fuerzas de propulsión producidas por la mano. Creo que el antebrazo y quizá la parte superior del brazo son superficies propulsoras efectivas que en gran parte se han ignorado. Sin embargo, algunos investigadores han estudiado la efectividad propulsora del antebrazo; entre ellos, una investigadora llamada Cappaert (1992) afirmó que la fuerza media de arrastre producida por el conjunto de antebrazo y mano en todos los ángulos de ataque estudiados era aproximadamente un 50% mayor que las producidas por la mano sólo. Aunque menores que las fuerzas de arrastre, las fuerzas de sustentación eran, sin embargo, más del 100% mayores para los conjuntos de antebrazo y mano que para la mano sólo. Se presenta un gráfico de estos resultados en la figura 1.25.
Los datos presentados en esta figura son los resultados de las mediciones que hizo Cappaert de su modelo de la mano con una velocidad de agua de 2 m/s y su modelo del antebrazo con una velocidad de agua de 1,5 m/s. Lo hizo así para que la fuerza combinada de los modelos de antebrazo y mano fuese más parecida a la natación real. Como se mencionó anteriormente, estas dos partes del miembro se desplazan a velocidades diferentes durante la natación real, con la mano moviéndose a más velocidad que el antebrazo. Dado que el brazo y la mano rotan en torno a la articulación del hombro, la velocidad lineal de la mano será mayor que la del antebrazo sencillamente porque la mano está más lejos del centro de rotación.

Figura 1.25. Una comparación de las fuerzas de sustentación y arrastre producidas por un modelo de escayola de la mano y de un modelo de escayola de la mano y del antebrazo de un nadador.
Adaptada de Cappaert, 1992.
Cuando la fuerza de arrastre producida por el modelo del antebrazo con una velocidad de agua de 1,5 m/s se añadió a la fuerza de arrastre producida por el modelo de la mano con una velocidad de agua de 2 m/s, la fuerza de arrastre combinada aumentó en casi un 50%, desde 17,5 N para la mano sola hasta un total de 26,2 N para el antebrazo y la mano combinados. Las fuerzas de sustentación aumentaron en más del 100% desde 3,1 N para la mano sola hasta 6,3 N para el antebrazo y la mano. Cappaert concluyó lo siguiente: “La mano y el antebrazo trabajando juntos durante la trayectoria del tirón tienen un mayor potencial para generar fuerzas que la mano sola.”
Bixler (1999) comparó los coeficientes de sustentación y de arrastre para su modelo computerizado de la mano y del brazo, y sus resultados también sugieren que el antebrazo contribuye de forma significativa a la fuerza propulsora total durante la brazada. Utilizando una velocidad de 2,0 m/s para la mano y 1,5 m/s para el brazo, la fuerza propulsora producida por su modelo estaba alrededor de 50 a 60 N con los ángulos de brazada y ángulos de ataque de la mano utilizados con más frecuencia por los buenos nadadores. Las fuerzas propulsoras de la mano estaban entre 35 y 43 N con los mismos ángulos de brazada y de ataque. Por lo tanto, añadir el antebrazo al modelo pareció aumentar la fuerza propulsora en aproximadamente un 27% sobre la cantidad producida por la mano sola. Calculó estas fuerzas para ángulos de brazada de entre 45º y 60º y ángulos de ataque de las manos de entre 60º y 75º en los movimientos de brazada dirigidos tanto hacia dentro como hacia fuera.
Schleihauf (1984) también presentó datos sobre la contribución del antebrazo a la propulsión en el estilo libre. Sus resultados se basaron en los cálculos matemáticos de la fuerza propulsora producida por las manos y los antebrazos de nadadores reales. Mostraron que, en el estilo libre, los antebrazos produjeron una cantidad significativa de fuerza propulsora durante la fase mediana de la brazada subacuática cuando los nadadores traían las manos hacia dentro por debajo de sus cuerpos y luego empezaban a moverlas hacia fuera y hacia arriba. La fuerza propulsora efectiva producida por los antebrazos rondaba los 15 N durante la mayor parte de este período. Las manos estaban produciendo aproximadamente 50 N de fuerza propulsora efectiva durante la misma fase, de manera que los antebrazos contribuían aproximadamente un 23% a la fuerza propulsora total.
De hecho, los resultados de estos tres estudios son académicos, es decir, no reflejan las verdaderas diferencias entre las velocidades de la mano y del antebrazo en la natación real. Cuando se impulsa el agua para que fluya alrededor de modelos de manos y brazos que están suspendidos en canales o simulados por ordenador, su velocidad será la misma en todos los puntos de los modelos. Será igual cuando se empuja el modelo de una mano o un brazo por el agua a una velocidad constante. Sin embargo, en la natación real, la velocidad del antebrazo y, en menor grado la mano, varía a lo largo de su longitud, según la distancia del hombro a un segmento particular. En otras palabras, en la natación real la parte inferior del antebrazo estaría desplazándose a una menor velocidad que la mano, pero más rápidamente que la parte media y superior del mismo. Como consecuencia, los cálculos que implican el uso de una velocidad para todas las partes de la mano y otra velocidad, arbitrariamente más lenta, para todos los segmentos del antebrazo evidentemente no serán totalmente exactos. Por lo tanto no es de extrañar que las estimaciones que hicieron estos tres investigadores acerca de la contribución propulsora del antebrazo difieran tanto.
Independientemente de este hecho, los resultados de los tres estudios sí que indican que el antebrazo puede contribuir de manera significativa a la fuerza propulsora total que los nadadores crean durante las brazadas. Si suponemos que la diferencia entre la velocidad de la parte de la mano que se desplaza con más rapidez (las yemas de los dedos) y la parte que se desplaza con más lentitud del antebrazo (cerca del codo) era aproximadamente 0,5 m/s, el antebrazo estaría contribuyendo alrededor del 27% (según los cálculos de Bixler) y 38% o más (según los cálculos de Cappaert) a la fuerza propulsora total de la brazada.
Desafortunadamente, no podemos calcular la contribución real del antebrazo en la propulsión en la natación hasta que se haga una investigación en la que se midan la fuerza propulsora de la mano y la del antebrazo según la relación complicada que existe entre sus diferentes velocidades. En ausencia de una investigación de este tipo, los resultados de estos tres estudios sugieren claramente que el antebrazo puede contribuir con mucho a la fuerza propulsora total producida por los nadadores con sus brazadas, aunque el valor exacto de esa contribución nos es desconocido en este momento.
En la década de los sesenta y principios de los setenta, la opinión dominante entre los expertos de la natación era que las piernas no contribuían a la propulsión en tres de los cuatro estilos competitivos porque se movían hacia arriba y hacia abajo en lugar de hacia atrás. La excepción era la braza, en la que las piernas efectivamente empujaban hacia atrás. Esta opinión cambió a finales de los setenta. Se reexaminó el papel de las piernas cuando llegó a estar de moda la propulsión por sustentación y empezamos a pensar que la contribución del batido a la propulsión podría ser mayor de lo que habíamos imaginado. Desde entonces, ha habido un renacimiento del interés por la contribución del batido a la velocidad de avance, y con justicia.
Creo que el batido del estilo libre y espalda y el batido de delfín que se utiliza en mariposa contribuyen mucho a la velocidad del nado. Ahora citaré los resultados de dos estudios que apoyan el batido como agente propulsor.
Watkins y Gordon (1983) hicieron que un grupo de 33 nadadores competitivos de ambos sexos nadasen unas distancias cortas a velocidad máxima con el estilo libre completo (con brazos y piernas) y sólo con los brazos. Durante las pruebas sólo con los brazos, los nadadores llevaban un pullbuoy para dar soporte a las piernas. Encontraron que los nadadores sólo podían nadar con los brazos al 90% de la velocidad que alcanzaban cuando ejecutaban el estilo completo. Por consiguiente, el batido aumentaba la velocidad aproximadamente en un 10% como promedio.
El trabajo más convincente sobre la propulsión de las piernas fue realizado por Hollander y colaboradores (1988), que utilizaron un sistema llamado MAD (medición del arrastre activo) para medir la fuerza propulsora durante la natación con estilo completo y con sólo los brazos. La figura 1.26 ilustra el sistema MAD.
El sistema MAD consta de una serie de almohadillas montadas en palos debajo del agua. Las almohadillas están también debajo del agua y están colocadas a distancias iguales a lo largo del palo de manera que los nadadores pueden estirarse hacia delante, agarrar una almohadilla y empujar hacia atrás contra ella con un brazo tras otro mientras nadan por la piscina. Se sitúan las almohadillas después de varias pruebas con los nadadores, para que su ritmo de brazada sea lo más normal posible durante la prueba. Cada almohadilla está conectada a un transductor de fuerza que tiene una interfaz con un ordenador de manera que se pueda medir la fuerza aplicada por el nadador al empujar contra la almohadilla. Dado que no hay deslizamiento cuando los nadadores empujan contra la almohadilla, toda la fuerza aplicada será propulsora y nada se pierde ni se usa para otros propósitos tales como la estabilización. Por consiguiente, el efecto de cualquier tratamiento experimental de la fuerza propulsora puede medirse directamente según la cantidad de fuerza que los nadadores puedan aplicar contra las almohadillas.

Figura 1.26. Un esquema del sistema MAD.
Adaptada de Toussaint, 1988.
Hollander y sus colaboradores estudiaron a 18 nadadores holandeses de ambos sexos del equipo nacional y de nivel olímpico en cada una de las dos condiciones:
La fuerza media producida por los sujetos durante la natación completa fue, como promedio, aproximadamente un 12% mayor que cuando sólo utilizaban los brazos. Hollander y sus colaboradores concluyeron, por lo tanto, que el batido contribuía como promedio un 12% a la propulsión en el estilo libre completo.
Lo que es bastante interesante es que estos investigadores encontraron que algunos atletas ganaron una cantidad considerable de fuerza propulsora de su batido mientras que otros, al contrario, perdían fuerza propulsora cuando realizaban el estilo libre completo. Esto significa que el batido puede aumentar o reducir la fuerza propulsora según la habilidad con la que se realiza. Algunos nadadores sacaban hasta un 27% más de fuerza propulsora del estilo completo, mientras que otros producían hasta un 6% más de fuerza propulsora cuando sólo nadaban con los brazos.
Existen pocas investigaciones acerca de la contribución del batido de delfín a la natación estilo mariposa. Sin embargo, yo supondría que contribuye aún más que el batido a la propulsión de los nadadores del estilo libre. El batido de espalda probablemente contribuye por lo menos tanto a la propulsión como el batido del estilo libre.
El batido es aceptado ahora por la mayoría de los expertos como un importante agente propulsor, pero el mecanismo responsable de la propulsión sigue siendo un misterio. Creo que el principio de Newton de acción y reacción también es responsable de la propulsión del batido. Es relativamente fácil de entender cómo los bracistas podrían utilizar las plantas de los pies para empujar el agua hacia atrás durante el batido, pero no es tan fácil comprender cómo pueden hacer esto en el batido del estilo libre y el de delfín, porque las piernas se desplazan hacia arriba y hacia abajo mucho más que hacia atrás en estos movimientos.
Un estudio de la trayectoria de los pies de los nadadores a través del agua revela que existe una pequeña cantidad de movimiento hacia atrás al inicio del movimiento descendente del batido del estilo libre y del delfín, y también durante el movimiento ascendente del batido de espalda. Es probablemente durante estos dos períodos cortos de tiempo en los que los pies se están desplazando hacia atrás cuando los nadadores aceleran su cuerpo hacia delante con los batidos del estilo libre y de delfín. La figura 1.27 muestra las trayectorias del movimiento descendente y ascendente del batido de delfín en mariposa y el movimiento ascendente y descendente del batido de espalda. La trayectoria del batido del estilo libre es parecida a la del batido de delfín.
Las líneas que representan las trayectorias de los pies en las figuras 1.27a y c muestran cómo los pies se desplazan efectivamente hacia atrás además de hacia abajo durante la primera mitad del movimiento descendente del nadador de mariposa y durante la primera mitad del movimiento ascendente del nadador de espalda. El dibujo de los vectores indica cómo la fuerza propulsora podría producirse por una combinación de las fuerzas de sustentación y de arrastre que los nadadores provocan con las piernas al desplazarlas hacia abajo y hacia atrás. Obsérvese que hay sólo un pequeño período de tiempo durante estos batidos en que los nadadores realmente están empujando el agua hacia atrás. Los pies se desplazan hacia abajo o hacia arriba en mayor grado y también se desplazan hacia el lado en espalda, aunque este movimiento no se ve en las vistas laterales presentadas en esta figura. Por lo tanto, los nadadores probablemente aceleran el cuerpo hacia delante durante sólo la primera parte del movimiento descendente en el estilo libre y del movimiento ascendente en espalda, pero el coste es alto ya que sólo una pequeña cantidad de la fuerza total producida se utiliza para este propósito. Esta observación está en la línea de dos hechos comúnmente conocidos acerca del batido del estilo libre y de espalda:
Basándome en los dibujos de los vectores para la segunda mitad del batido de delfín en la figura 1.27a y del movimiento ascendente del batido de espalda en la figura 1.27c, he concluido que estas partes del batido no son propulsoras porque todas las fuerzas combinadas de sustentación y arrastre serán dirigidas hacia arriba, como indican dichos dibujos. Por lo tanto, el propósito principal de la segunda mitad del movimiento descendente del batido del estilo libre y la fase correspondiente del movimiento ascendente del batido de espalda es probablemente para estabilizar las caderas en la superficie y así mantener una buena alineación horizontal y lateral. Sin embargo, sí que creo que los nadadores de mariposa ganan propulsión durante la segunda mitad del batido de delfín utilizando un mecanismo que he denominado la ondulación corporal inversa, que describiré en el capítulo 3.
Los movimientos ascendentes del batido del estilo libre y de delfín y el movimiento descendente del batido de espalda son probablemente sólo efectivos para mantener la alineación corporal y no tienen una función propulsora. He basado este supuesto en el hecho de que los pies nunca se desplazan hacia atrás durante los movimientos ascendentes de estos batidos (excepto en espalda). Como se aprecia en las trayectorias de los pies ilustradas en la figura 1.27, se están desplazando hacia arriba y hacia delante en el batido del estilo libre y de delfín, y hacia abajo y hacia delante en el batido de espalda. Los dibujos de los vectores muestran que durante los movimientos ascendentes del batido de delfín y del estilo libre todas las fuerzas combinadas de sustentación y arrastre se dirigen hacia abajo. Esta fuerza se dirige hacia arriba para los nadadores de espalda durante el movimiento ascendente del batido.
Figura 1.27. Trayectorias del movimiento descendente (a) y ascendente (b) del batido de delfín en mariposa y movimiento ascendente (c) y descendente (d) del batido en espalda.
No se conoce la magnitud real de las fuerzas de sustentación y de arrastre que producen los nadadores con los pies, aunque sospecho que producen más arrastre que sustentación, porque los dibujos de los vectores indican que las caderas se verían arrastradas hacia abajo si los nadadores produjeran más sustentación que arrastre durante el movimiento descendente del batido del estilo libre y de delfín y que las caderas serían empujadas hacia arriba durante el movimiento ascendente de espalda. Se han elaborado dibujos de los vectores en los que las fuerzas de sustentación son mayores que las de arrastre para el movimiento descendente del batido de delfín y el movimiento ascendente del batido de espalda en las figuras 1.28 (a) y 1.28 (b), respectivamente.
Como se ilustra, si las fuerzas de sustentación generadas por los pies fuesen iguales o mayores que las fuerzas de arrastre que producen, la fuerza dominante (sustentación) iría dirigida hacia abajo y hacia delante durante el movimiento descendente del batido del estilo libre y de delfín, arrastrando las caderas hacia abajo. Esto es, por supuesto, lo opuesto al efecto real del movimiento descendente de estos dos batidos, en los que las caderas suelen ser empujadas hacia arriba cuando los nadadores dirigen el batido hacia abajo. De igual manera, una gran fuerza de sustentación tendería a empujar las caderas hacia arriba durante el movimiento ascendente del batido de espalda. Esto también es el efecto opuesto de lo que se produce durante el movimiento ascendente del batido en el que las caderas suelen ser empujadas hacia abajo. Por consiguiente, es dudoso que las fuerzas de sustentación predominen durante los movimientos de batido.
Colwin (1992) ha planteado que el mecanismo del aro volador es responsable de la propulsión de los batidos. Se ha propuesto que el mecanismo del aro volador en el movimiento descendente del batido de delfín, ilustrado en la figura 1.29, opera de la siguiente manera: durante el movimiento descendente, el nadador lleva agua hacia abajo con los pies. Esa agua es empujada hacia atrás rápidamente cuando los pies llegan al final del movimiento descendente y cambian de dirección para empezar a ascender. El impulso hacia atrás del agua crea una propulsión efectiva porque produce una fuerza contraria que impulsa el cuerpo hacia delante. Sin embargo, dudo que el mecanismo del aro volador realmente propulse a los nadadores hacia delante de esta forma. Como ya se ha explicado, la propulsión por este mecanismo depende de la capacidad de los nadadores de mantener el efecto de un vórtice adherido al desplazar los pies hacia abajo por el agua. Este mecanismo, aunque sea posible con objetos con perfil de ala en el aire y el agua, probablemente no ocurre con los seres humanos porque los pies no tienen un perfil de ala. Los pies humanos son aun menos parecidos a formas con perfil de ala que las manos, que, como se ha indicado anteriormente, tampoco tienen dicho perfil. Por lo tanto, es dudoso que se pudiese mantener una corriente estable de agua alrededor de los pies mientras realizan el movimiento descendente.
Figura 1.28. La propulsión dominada por la fuerza de sustentación durante el batido. El dibujo del vector (a) muestra el efecto de la propulsión dominada por la fuerza de sustentación durante el movimiento descendente del batido de delfín en mariposa. El dibujo del vector (b) muestra el mismo efecto para el batido de espalda.

Figura 1.29. Un ejemplo de cómo el mecanismo del aro volador podría propulsar al nadador hacia delante durante el movimiento descendente del batido del estilo libre o delfín.
Otra razón por la que dudo que el mecanismo del aro volador sea propulsor durante el batido es porque el momento de la propulsión del batido no encaja con el momento en el que el agua sería impulsada hacia atrás por los pies. Si operase el mecanismo del aro volador, la velocidad de avance debería acelerar al completar el movimiento descendente del batido del estilo libre y de delfín y el movimiento ascendente del batido de espalda. Pero mis observaciones de registros de la velocidad de avance de nadadores que realizaban el batido con tabla mostraron que la mayor aceleración en la velocidad de avance tuvo lugar durante la primera mitad del movimiento descendente del batido del estilo libre y mariposa y durante la primera mitad del movimiento ascendente del batido de espalda. Desaceleraban durante la segunda mitad del movimiento descendente del batido del estilo libre y mariposa y en la segunda mitad del movimiento ascendente del batido de espalda. También desaceleraron durante los cambios de dirección de abajo arriba, que es el momento en que el agua supuestamente sería impulsada hacia atrás con el mecanismo del aro volador.
Por lo tanto, si el batido es tan inefectivo para producir fuerza propulsora, ¿por qué algunos nadadores de hecho se desplazan mediante el batido debajo del agua más rápidamente de lo que nadan en la superficie? Como se explicará en el capítulo 3, las ondulaciones del cuerpo probablemente son responsables de parte de la velocidad alcanzada con el batido de delfín. Sin embargo no puede explicar el hecho de que algunos nadadores pueden desplazarse con más velocidad con el batido de delfín debajo del agua que la que alcanzan cuando nadan en la superficie con el estilo completo. La velocidad superior del batido de delfín subacuático probablemente puede explicarse por el hecho de que los nadadores están debajo del agua donde la fuerza de arrastre es menor, y por el número de impulsos propulsores que aplican en cada segundo de batidos. Lyttle y colaboradores (1999) afirmaron que, comparando con la superficie, la fuerza de arrastre resistivo se reduce en hasta un 18% a una profundidad de 0,40 m. Por lo tanto, los nadadores no tendrían que proporcionar tanta fuerza propulsora para lograr nadar a la misma velocidad cuando nadan debajo del agua que cuando nadan en la superficie. También los nadadores mueven sus piernas a un ritmo de más de 150 batidos/minuto cuando realizan el batido de delfín debajo del agua, comparado con un ritmo máximo de brazada de 60 ciclos/minuto cuando realizan el estilo completo. Estos movimientos extremadamente rápidos de las piernas probablemente permiten a algunos nadadores alcanzar velocidades mayores debajo del agua que las que pueden alcanzar en la superficie, por lo menos durante un corto período de tiempo.
Como se mencionó anteriormente, hasta ahora nadie ha podido explicar el mecanismo implicado en la propulsión en la natación. Sólo contamos con teorías que se relacionan con los principios físicos implicados y la manera en que se aplican. En este capítulo he tratado de presentar y criticar las teorías más populares. También he propuesto el tercer principio del movimiento de Newton, el de acción y reacción, como el mecanismo más probable. Se presentan a continuación los principales puntos que he mencionado para apoyar esta afirmación.
• Empujar el agua hacia atrás es probablemente responsable de la natación humana. El principio de acción y reacción de Newton se aplica de la manera siguiente: cuando los nadadores empujan el agua hacia atrás, reciben una fuerza contraria que acelera el cuerpo hacia delante. Sin embargo no empujan el agua directamente hacia atrás, ni deben hacerlo, porque la estructura y la función de la articulación del hombro y los requisitos de la brazada efectiva hacen que este método sea menos efectivo que realizar una brazada diagonal a través del agua.
• Los nadadores utilizan las manos como palas no como hélices. Las empujan hacia atrás contra el agua en lugar de remar por el agua. Empujan sus miembros hacia atrás para maximizar la contribución de las fuerzas de arrastre a la propulsión porque el arrastre es una fuerza propulsora más efectiva que la sustentación. Esa conclusión parece deducirse de los ángulos de ataque que se midieron en buenos nadadores durante la fase propulsora de sus brazadas subacuáticas. En la mayoría de los casos, los nadadores escogen intuitivamente utilizar ángulos mayores de ataque que maximizan la contribución de las fuerzas de arrastre en lugar de ángulos más pequeños en los que la contribución de las fuerzas de sustentación serían mayores.
• Los nadadores de nivel mundial siempre desplazan las manos diagonalmente hacia atrás durante la fase propulsora de sus brazadas subacuáticas. En cambio, la velocidad de avance de los nadadores se reducirá cuando utilizan movimientos verticales y laterales de las manos en forma de remada que no tienen un componente que vaya hacia atrás. La velocidad de avance disminuye aún más cuando las manos se desplazan diagonalmente hacia delante.
• Los buenos nadadores tratan de mantener las manos casi perpendiculares a la dirección del desplazamiento hacia delante del cuerpo durante la fase propulsora de las brazadas subacuáticas. Los buenos nadadores del estilo libre, de espalda y de mariposa prefieren utilizar ángulos de ataque de las manos de entre 50º y 70º durante estas fases propulsoras. Esto parece ser una tentativa para mantener la mayor área de superficie posible de las manos y de los brazos mirando hacia atrás cuando realizan la brazada diagonalmente por el agua. Este rango de ángulos de la mano favorece la producción de las fuerzas de arrastre más que de las de sustentación.
Creo que los bracistas también deben mantener las manos mirando casi perpendicularmente a la dirección del avance, aunque los datos disponibles muestran que algunos prefieren utilizar ángulos de ataque menores.
• Los nadadores no necesitan preocuparse por los ángulos de ataque de las manos durante las fases propulsoras de las brazadas subacuáticas. Sólo necesitan mover sus brazos por el agua en las trayectorias tradicionales en forma de S en relación con el cuerpo. Al hacerlo, estarán utilizando ángulos de ataque de las manos que son muy cercanos a los ideales para las direcciones reales que los miembros están siguiendo en relación con un punto fijo de la piscina.
• Aunque de menor importancia, el papel de la sustentación en la propulsión de la natación debe tenerse en cuenta. Los movimientos de brazada de los nadadores producen fuerzas de sustentación además de las de arrastre. Aunque la cantidad con que contribuyen las fuerzas de sustentación a la fuerza propulsora total es un tema polémico, cualquier contribución que realizan debe considerarse significativa.
• El antebrazo y quizá la parte superior del brazo desempeñan un papel importante en la propulsión de la natación. Los resultados recogidos por Cappaert, Bixler y Schleihauf sugieren que el antebrazo contribuye del 15% al 38% de la fuerza propulsora total producida por la brazada. Parece razonable, por lo tanto, concluir que el brazo contribuye de manera considerable a la propulsión, especialmente considerando el área de superficie adicional proporcionado por el antebrazo.
• La propulsión del batido probablemente se logra al empujar hacia atrás contra el agua. Las trayectorias del movimiento de los pies revelan que las piernas se desplazan hacia atrás durante la primera parte del movimiento descendente del batido del estilo libre y de delfín y durante la primera parte del movimiento ascendente del batido de espalda. Los registros del centro de masas indican que los nadadores propulsan el cuerpo hacia delante más rápidamente durante estas mismas fases. También parecen estar empujando hacia atrás contra el agua con las plantas de los pies durante la fase más propulsora del batido de braza, lo que da un apoyo adicional a la noción de que la propulsión de las piernas probablemente se debe al principio de Newton de acción y reacción.